
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет» Кафедра «Бурение нефтяных и газовых скважин»

ТЕХНОЛОГИЯ БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

Методические указания и контрольные задания для студентов по специальности 21.03.01. «Бурение нефтяных и газовых скважин»

ОГЛАВЛЕНИЕ

		Стр
1.	Условия работы бурильной колонны. Напряжения, возникающие в	4
	процессе работы	
	1.1.Главные функции бурильной колонны	4
	1.2. Условия работы бурильной колонны	5
	1.3. Напряжения, вызванные осевыми нагрузками бурильных труб и	6
	силами трения при осевом перемещении колонны	
	1.4. Радиальные нормальные напряжения	10
	1.5. Напряжений, возникающих в бурильных трубах	12
	при посадке на клинья в клиновом захвате	
	1.6. Касательные напряжения	13
	1.7. Расчет бурильной колонны на выносливость	15
	1.8. Пример расчёта бурильной колонны при использовании	18
	забойных двигателей	
	1.9. Условные обозначения, использованные в разделе 1.	23
2.	Расчет профилей наклонно направленных скважин	25
	2.1.Выбор конфигурации профиля наклонно направленной	25
	скважины	
	2.2. Расчет профилей обычного типа	27
	2.3. Пример расчета трехинтервального профиля	31
3.	Показатели работы долот. Оценка работы долота по данным	34
	наблюдения в течение одного долбления	
4.	Контрольные задания	38
•	4.1. Расчет бурильной колонны	38
	4.2. Расчет профиля скважины	39
	4.3.Расчёт показателей работы долот	40
5	Список литературы	42
○ .		

1. Условия работы бурильной колонны.

Некоторые определения, используемые при расчётах.

Прочность- способность конструкции не разрушаясь воспринимать статические и динамические нагрузки

Напряжение (σ) — мера внутренних сил, возникающих в теле при его деформации (под воздействием внешних сил). (МПа, кгс/см²)

Модуль Юнга(Е)— отношение нормального напряжения к вызванной им относительной упругой деформации, является постоянной величиной для данного материала. Для стальных бурильных труб(СБТ)- $2,1\cdot10^5$ МПа; для алюминиевых бурильных труб (АБТ) – $0,7\cdot10^5$ МПа.

Момент инерции(I) — мера инертности при вращательном движении. Равен сумме произведений масс всех элементов тела на квадраты их расстояний до оси относительно которой он вычисляется. Для труб $I = \frac{\pi(D^4 - d^4)}{64}$ (кг·м⁴; г·м⁴).

Момент вращения (**крутящий момент**) (Mкр) — скалярная величина равная произведению модуля радиус- вектора на модуль силы в точке куда проведён радиус.($H \cdot M$)

Жёсткость трубы (EI) — способность воспринимать нагрузки без деформаций. ($\Pi a \cdot M^4$).

Устойчивость – способность тела или конструкции сопротивляться циклическим нагрузкам (σ -1).

1.1. Основные функции бурильной колонны:

- обеспечение канала для подведения энергии, необходимой для вращения долота (механической, гидравлической, электрической)
- восприятие реактивного крутящего момента при работе забойных двигателей;
- обеспечение канала круговой циркуляции рабочего агента для очистки скважины от выбуренной породы;
- создание осевой нагрузки на долото;
- обеспечение гидравлического канала связи для получения информации от специальных устройств, находящихся в скважине или управления последними;

• При проведении операций, связанных с использованием испытателя пластов на бурильных трубах (ИПТ), установки цементных мостов, проведения аварийных работ и др.

1.2. Условия работы бурильной колонны

Бурильная колонна находится в условиях сложного напряжённого состояния. Причём, различные её участки одновременно подвергаются действию различных нагрузок, вызывающих следующие напряжения: а также осевые (растяжение и сжатие);

- Радиальные, обусловленные избыточным внутренним или наружным давлением;
- напряжения, обусловленные изгибающими усилиями;
- касательные напряжения, вызываемые крутящим моментом;
- сминающие от действия клинового захвата;
- динамические напряжения, вызываемые трудно учитываемыми динамическими нагрузками, вызываемыми большим количеством причин;

Условие достаточной прочности труб в рассматриваемом сечении на участке, подверженном растягивающим нагрузкам, определяется из выражения:

$$\delta_{nes} = \sqrt{\delta_n^2 + 3\tau^2} \le \delta_{\partial n}$$

где σ_{n} - сумма всех нормальных напряжений, направленных вдоль оси трубы;

 τ - касательное напряжение;

 $\sigma_{\partial on}$. - допустимое напряжение для данного сечения трубы, определяется с учётом запаса прочности.

По своей сути это сравнение результирующего и допустимого напряжений

Допускается использование упрощённой формулы для определения результирующего напряжения-

$$\sigma_{\text{pe}_3}=1,04\sigma_{\scriptscriptstyle H}$$

1.3. Напряжения, вызванные осевыми нагрузками в бурильных трубах при циркуляции без опоры на забой

Растягивающие усилия, возникающие под воздействием собственного веса бурильной колонны, составленной из одного типоразмера труб и перепада давлении в ГЗД и долоте

$$F_{pz}=q(L-z)\cdot K\rho+G\cdot P_{\theta}S_{\theta}=q\cdot ((L-z)+G)K\rho+P_{\theta}S_{\theta}$$

где F_{pz} —растягивающее усилие, обусловленное массой бурильной колонны, расположенной ниже сечения z; m-приведённая масса 1 м труб c учётом высадок, муфт и замков (приводится в справочниках);

q– приведённый вес 1м труб с учётом высадки и замков;

L – полная длина колонны бурильных труб;

 $K \rho$ – коэффициент облегчения в растворе, $K \rho = 1$ - (ρ_{M}/ρ_{M}) ;

z- глубина рассматриваемого сечения,

 $ho_{\mathcal{H}}$ $_{\mathit{u}}
ho_{\mathit{M}}$ плотность промывочной жидкости и плотность металла соответственно.

 P_0 - перепад давления на ГЗД и долоте

G-вес КНБК

 S_{θ} -площадь поперечного сечения канала трубы в сечении Z.

Нормальное осевое напряжение $\sigma_{u.z}$ в сечении z, определяется из выражения:

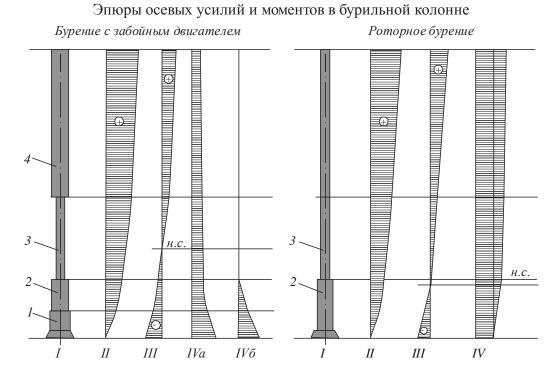
$$\sigma_{{\scriptscriptstyle HZ}} = \frac{F_{{\scriptscriptstyle pz}}}{{
m S}}$$
, где S-площадь поперечного сечения металла трубы в сечении **Z**.

Допустимая длина колонны бурильных данной группы прочности и типоразмера бурильных труб $L_{\text{доп,}}$ зависит только от прочностных характеристик материала, из которого они изготовлены, растягивающего усилия в рассматриваемом сечении и не зависит от их площади сечения.

$$L_{\text{доп.}} = \frac{F_{\text{р.доп.}} - \mathbf{G}_{\text{кнбк}} \cdot K_{p} - P_{o} \cdot S_{o}}{q \cdot K_{\text{зп}} \cdot K_{p}}$$

Где Кзп- коэффициент запаса прочности на растяжение. При бурении вертикальных скважин имеет значение 1,4 для роторного бурения и 1,3 для

турбинного. При бурении наклонных скважин, интенсивность набора или спада кривизны которых составляет 4⁰ или более на 100м при роторном бурении принимается 1,45; при бурении забойными двигателями 1,35.


 $K \rho$ - коэффициент облегчения в буровом растворе;

$$K_p = \left(1 - \frac{\rho_{_{\mathcal{H}}}}{\rho_{_{M}}}\right)$$

 κ_{π} – коэффициент динамичности 1,15;

q-вес 1погонного метра труб;

 $F_{p \partial on.} = \sigma_m \cdot S/K_{3\Pi}$

I- схема компоновки бурильной колонны; II- эпюра осевых усилий при ненагруженном долоте; III- эпюра осевых усилий в процессе бурения; IV- эпюра крутящего момента в процессе бурения (a- реактивный крутящий момент достигает устья); H-. - условно нейтральное сечение. I- забойный двигатель; I- утяжеленные бурильные трубы; I- колонна СБТ; I- колонна ЛБТ

н.с.- нейтральное сечение

Напряжения, возникающие в результате изгиба труб.

Наиболее распространённый вид изгиба — поперечный изгиб в искривлённых интервалах наклонно-направленной скважине. При поперечном изгибе в теле трубы возникают растягивающие напряжения с выпуклой стороны и сжимающие с вогнутой. Напряжения поперечного изгиба в не вращающейся колонне неизменны по величине и знаку, во

вращающейся величина сохранится, знак будет меняться в зависимости от частоты вращения. Их определяют из выражения:

$$\sigma_{_{u32}} = \frac{E \cdot D_{_{\rm H}}}{2R}$$

где *Е*-модуль Юнга;

Dн — наружный диаметр труб;

R- радиус искривления скважины в расчётном интервале.

Напряжения сжатия возникают при проведении различных операций в скважине, в подавляющем числе случаев их значения ниже предела текучести материала труб и вызывают продольный или продольно - поперечный изгиб труб, при котором трубы не восстанавливают первоначальную форму за счёт только сил упругости материала. В определённых условиях при воздействии динамической нагрузки (аварийное падение колонны труб в скважину с небольшими зенитными углами приводят к остаточной деформации последних и их выбраковке, реже к слому труб).

Условия потери устойчивости с учётом шарнирного опирания нижнего конца труб определяется по формуле Эйлера:

$$F_{\kappa p} = \pi^2 EILl^2$$

где $F_{\kappa p}$ - осевое усилие, при котором происходит потеря устойчивости бурильной колонны.

 $E = 2 \cdot 10^5 M\Pi a$ - модуль нормальной упругости,

$$I = \frac{\pi \ \mathbf{D}_{\text{\tiny H}}^4 - D_{\text{\tiny B}}^4}{64}$$
 — осевой момент инерции поперечного сечения трубы,

где D_{n} - наружный диаметр трубы, D_{e} - внутренний диаметр,

М – коэффициент приведения при шарнирном опирании стержня равен 1,

L-длина колонны труб.

В случае увеличения длины труб в n раз критическая сила $P_{\kappa p}$ уменьшается в n^2 раз.

Различают 3 рода деформации: деформации 1-го рода - когда принимается форма полуволны синусоиды, 2-го рода — синусоиды и 3-го рода — спирали. Во всех случаях амплитуда изгиба ограничивается стенками скважины.

Выбранная компоновка УБТ проверяется на устойчивость.

$$F_{\kappa p} = 2\sqrt[3]{EIq}^2$$

 Γ де q – вес 1 п.м. труб.

$$L_{\kappa} = 2\sqrt[3]{EI/q}$$

Если $F_{\kappa p}$ больше или равно G_{∂} , или $I_{\kappa p}$ гре $F_{\kappa p}$ и G_{∂} критическая осевая нагрузка и нагрузка на долото, а $I_{\kappa p}$ критическая длина для данного размера УБТ), в месте изгиба устанавливаются опорно- центрирующие элементы или пересматривается компоновка.

Экспериментальным путём определено, что при $L_{\kappa p} = 4.22\sqrt[3]{EI/q}$ образовывается синусоида, при дальнейшем увеличении длины- спираль.

Расчётные значения критических нагрузок для наиболее распространённых диаметров УБТ приведены в таблице **2**.

Таблица 2.

Критическая	Диаметр УБТ, мм						
нагрузка, тс	146	178	203				
$F_{\kappa p} 1$	4,3	7,8	10,5				
$F_{\kappa p} 2$	10,6	19,5	26,5				
$F_{\kappa p}3$	36	66	90				

1.4. Радиальные нормальные напряжения

Радиальные нормальные напряжения(σ_{pag}) возникают в результате действия внутреннего избыточного давления.

$$\sigma_{\textit{pad}} = \frac{P_{\textit{\tiny \textit{B.M.}}} \cdot D_{\tiny \textit{B}}}{2K_{\textit{\tiny \textit{p}}} \cdot t}$$

гдеорад- радиальное нормальное напряжение;

 ${\it P}_{{\scriptscriptstyle {\rm B.H.}}}$ - внутреннее избыточное давление в колонне бурильных труб на рассчитываемой глубине;

 $D_{\text{в}}$ – внутренний диаметр труб;

К*р* – коэффициент разностенности труб

t – толщина стенки трубы; (принимается 0, 875).

При проверочном расчёте полученную величину необходимо сравнить с пределом текучести материала используемых труб. Коэффициент запаса прочности должен быть не менее 1,15.

$$n=\frac{\boldsymbol{\sigma}_{T}}{\boldsymbol{\sigma}_{p}}\geq 1,15.$$

Второй способ выполнения проверочного расчёта заключается в сравнении ожидаемого наибольшего внутреннего избыточного давления *Рв.и.* и предельного внутреннего давления для данного типоразмера труб Ркр.

$$n = \frac{P \kappa p}{P_{RM}} \ge 1,15$$

При отсутствии табличных данных предельное внутреннее давление определяется из выражения:

$$P_{\kappa p} = \frac{0.875 \cdot \sigma_{\mathrm{T}} \cdot 2\delta}{D_{\scriptscriptstyle{\mathrm{HB}}}}$$

Где σ_r предел текучести материала труб;

 δ – номинальная толщина стенки трубы;

 D_{H} - наружный диаметр трубы

Предельноевнутреннее давление для стальных труб поГОСТ Р 50278-92

Наружный	Толщина	Предельн	Предельное внутреннее давление							
Диаметр,	Стенки,	Соответст	Соответствующее пределу текучести МПа							
MM	MM	Д	Д Е Л М Р							
114,3	8,6	50,03	68,08	88,33	95,35	122,60				
	10,3	63,37	86,23	109,40	120,90	155,40				
127,0	9,2	48,17	65,53	83,09	91,82	118,00				
	12,7	66,41	90,45	114,70	126,70	162,90				
139,7	9,2	43,75	59,55	75,54	83,48	107,30				
	10,5	49,93	68,00	86,23	95,26	122,60				

Проверка на сминающие давления производится при глубинах опорожнения более 200м.

Предельное наружное давление для стальных труб по ГОСТ Р 50278-92

Наружный	Толщина	Предельное наружное давление							
Диаметр,	Стенки,	соответсті	соответствующее пределу текучести МПа						
MM	MM	Д Е Л М Р							
114,3	8,6	42,48	55,92	68,08	73,58	87,90			
	10,3	58,00	77,70	96,73	105,90	131,70			
127,0	9,2	40,32	52,78	63,96	68,96	81,52			
	12,7	61,41	82,00	103,10	113,00	141,40			

139,7	9,2	34,92	45,32	53,96	57,68	66,71	
	10,5	42,48	55,92	68,00	73,48	87,70	

1.5. Напряжений, возникающих в бурильных трубах при посадке на клинья в клиновом захвате

Обязательным является расчёт напряжений, возникающих в бурильных трубах при посадке на клинья в клиновом захвате.

Осевая нагрузка, которой соответствуют напряжения, достигающие предела текучести, определяется из выражения:

$$Q_{\text{TK}} = \frac{\sigma_{\text{\tiny T}} S \cdot C}{1 + \frac{d_{\text{\tiny cp}}}{4l_{\text{\tiny K}} ctg(\alpha_{\text{\tiny KH}} + \varphi)}}$$

Где $Q_{m. \kappa}$ - предельная осевая растягивающая нагрузка на бурильные трубы в клиновом захвате.

S – площадь поперечного сечения тела трубы;

C – коэффициент охвата трубы клиньями,

$$C = \frac{ky}{360}$$

dср- средний диаметр трубы

 γ - угол охвата плашками одного клина град.;

 \boldsymbol{k} - количество клиньев;

 α - угол наклона клиньев, град.;

 \boldsymbol{l}_{κ} - рабочая длина клина мм;

 ϕ - угол трения на поверхности сопряжения клина с корпусом клинового захвата, град.;

Величина ctg ($\alpha_{\kappa n} + \varphi$) принимается равной 2,5. Коэффициент охвата-0,9.

Запас прочности определяется по формуле:

$$N$$
кл = $\frac{Qm\kappa}{Q} \ge 1,15$.

Допускается упрощённая методика определения коэффициента запаса прочности с использованием табличных значений $Q_{m\kappa}$, при этом его табличное значение необходимо умножать на коэффициент обхвата $C \le 0.9$

Предельные осевые растягивающие нагрузки в κH , в клиновом захвате для бурильных труб по ГОСТ 50278 — 92 и стандарту АНИ для клиньев 400мм при коэффициенте охвата C = 1.

Наружный диаметр	Толщина стенки, мм	Группа прочности							
трубы, мм	стенки, мм	Д	E/E-75	Л/Х-95	M/G105	P/S-135			
	8.56	926	1260	1598	1765	2270			
114,3	10,92	1160	1577	1999	2208	2840			
	0,19	1091	1484	1881	2078	26,72			
127,0	12,7	1469	1998	2533	2798	3599			
	9,17	1186	1613	2045	2259	2905			
139,7	10,54	1354	1830	2330	2574	3310			

1.6. Касательные напряжения

Касательные напряжения возникают в результате реакции на крутящий момент, возникающий при работе забойного двигателя или ротора

 $au = \frac{M_{_{\kappa p}}}{W_{_{\rm n}}}$, где $W_{\rm n}$ — полярный момент сопротивления сечения, который определяется по формуле

$$W_{_{\Pi}} = \frac{\pi \left(1 - \frac{D_{_{\mathrm{B}}}^4}{D_{_{\mathrm{H}}}^4}\right)}{16}$$

Где *Dн* и *Dв* наружный и внутренний диаметры труб соответственно.

При роторном бурении возникают нагрузки, вызванные действием крутящего момента, передаваемого долоту посредством вращения всей колонны бурильных труб.

$$M_{\kappa} = M_{\partial} + M_{x.e.}$$

Где M_{κ} - крутящий момент, необходимый для вращения бурильной колонны и долота;

 M_{∂} - крутящий момент, необходимый для вращения долота;

 $M_{x.s.}$ - крутящий момент необходимый для преодоления сил трения при вращении бурильной колонны о стенки скважины и раствор.

 M_{θ} определяется из следующего выражения

$$M_{\partial} = m_{v\partial} D_{\partial} G_{\partial} (H \cdot M)$$

 Γ де m_{vo} – удельный крутящий момент; $(H\cdot M)/(\kappa H\cdot M)$;

 D_{δ} - диаметр долота, M;

 G_{∂} - нагрузка на долото κH ;

Для приближённого вычисления $M_{x.\ e.}$ существует эмпирическая формула

$$M_{x. \theta} = 128,9 \cdot 10^{-4} \cdot l \cdot D_{H} \cdot n^{0.5} \cdot D^{0.5}_{CK\theta} \cdot \rho_{p}$$

Где -*l* -длина труб, м;

 D_{n} - наружный диаметр труб, м;

n- частота вращения долота (бур. колонны), мин⁻¹;

 $D_{c\kappa\theta}$ – диаметр скважины,м;

 ho_p – плотность бурового раствора кг/м 3

Опытныезначения m_{vo} для различных типов долот.

Тип долота	Тип вооружения	Удельный момент, m _{уд}
По конструкции	долота	(H· m) /m· kH)
Шарошечные	M	45
	MC	42
	С	37
	СТ	32
	Т	27
	К	22
Алмазные	Природные алмазы	60

Тип долота	Тип вооружения	Удельный момент, т _{уд}
По конструкции	долота	(H ⁻ м) /м ⁻ кН)
	ИСМ	55
	PDC	70

1.7. Расчёт бурильной колонны на выносливость

При вращении колонны бурильных труб под действием центробежных сил она приобретает волнообразную форму.

В результате в теле труб возникают изгибающие моменты и как следствие изгибные напряжения. Т.к. колонна вращается вокруг собственной оси, а не вокруг оси скважины, при каждом обороте сжатая и растянутая части меняются местами и происходит циклическое изменение изгибного напряжения, что приводит к вероятности усталостного слома бурильных труб. Наиболее опасные сечения — верхние сечения равнопрочной секции, участки искривления скважины, места резкого изменения жёсткости бурильной колонны.

1. Вычисляется угловая скорость (рад/сек)

$$\omega = \pi n / 30 ce \kappa^{-1}$$

2.Определяется осевое усилие в выбранном сечении

$$Q=\sum (qgl_iK_\rho)-G_{\delta}$$

 K_{ρ} - коэффициент, учитывающий потерю веса в растворе,

3. Определяется длина полуволны синусоиды образовавшейся в результате потери устойчивости:

$$L_{ne}=q \omega^2\pm Q$$

 ${\hbox{\bf Q}}^2$ - сила, вызывающая растягивающие или сжимающие напряжения.

4.Определяется изгибающий момент, возникший в результате потери устойчивости

$$M_{\scriptscriptstyle us}=rac{\pi 2\delta\!FI}{{
m L}_{\scriptscriptstyle
m rm}^2}$$
 , где $\pmb{\delta}$ — стрела прогиба трубы.

$$\delta = \frac{\mathbf{\Phi}_{\rm c} - d_{\rm 3M}}{2}$$

Определяется напряжение изгиба

 $\sigma_{\scriptscriptstyle u\scriptscriptstyle 3}=\frac{M_{\scriptscriptstyle u\scriptscriptstyle 3}}{W}$, где W- осевой момент сопротивления,

$$W = \frac{\pi}{32D_{\scriptscriptstyle\rm B} \cdot \mathbf{D}_{\scriptscriptstyle\rm H}^4 - D_{\scriptscriptstyle\rm BH}^4}$$

5.Запас выносливости без учёта касательных напряжений определяется из выражения:

 $n_{\sigma} = \sigma_{-1} / \sigma_a (1 + (\sigma_{-1} \sigma / \sigma_e \sigma_a)^{-1}$ где $\sigma_{\rm B}$ — предел прочности; $\sigma_{\rm a}$ — амплитуда колебания при изгибе, $\sigma_{\rm a} = \sigma_{\rm u3}$

Эквивалентный запас выносливости при совместном действии изгибных и касательных напряжений определяется по формулам:

$$\tau = \frac{M_{\mathcal{A}} + M_{x_{\theta}}}{W_{\phi}}; \quad n = \frac{0.577 \sigma_{\text{m}}}{\tau}; \quad n_{\sigma} \cdot n_{\tau} \cdot n_{\sigma}^{2} + n_{\tau}^{2}$$

общий запас выносливости из выражения:

$$n_{\sigma\tau} = \frac{n_{\sigma}n_{\tau}}{\sqrt{n_{\sigma}^2 = n_{\tau}^2}}$$

Необходимое условие - п_τ₀≥1,3

Расчёт бурильных колонн выполняется в следующих случаях:

- при разработке проекта на строительство скважин;
- при составлении бурильной колонны из имеющихся труб;
- при изменении условий эксплуатации бурильной колонны (например, смена способа бурения, траектории скважины и т. д.);
- при выполнении аварийных работ;
- при подборе труб для секционного спуска обсадных колонн;
- при работе ИПТ в случае полного опорожнения или вызова притока пластового флюида на устье;

Выбор компоновки бурильной колонны производится с учётом опыта и условий бурения на данной и соседних площадях в аналогичных геологических условиях. После предварительного выбора типоразмеров элементов бурильной колонны производится еёрасчёт.

Бурильная колонна может состоять из однотипных труб, а также из различных комплектов труб, отличающихся по диаметру, толщине стенки и материалу.

При роторном бурении, как правило, бурильную колонну составляют из стальных труб, при турбинном чаще используют комбинированную, состоящую из стальных труб в нижней части и алюминиевых в верхней.

бурении наибольшее внимание обращается При роторном прочность, а при бурении с ГЗД- на герметичность и гидравлические характеристики бурильной колонны.В некоторых случаях при бурении в сложных, малоизученных геологических условиях при бурении параметрических, термальных, сверхглубоких предпочтение скважин отдаётся не оптимизации конструкции бурильной колонны по прочностным характеристикам и способности передавать на ГЗД энергию с минимальными потерями, а обеспечению максимальных запасов прочности. Размеры труб рекомендованы в таблице 1.

Таблица 1. **Рекомендуемые соотношения диаметров долот и бурильных труб**

Диаметр, мм								
Диаметр долота	Диаметр УБТ	Диаметр СБТ	Диаметр ЛБТ					
120,6	95/89	60,3/73	60,3/73					
139,7; 145	114;133/108	73;89	73;89					
151	121;133/108;114	89	90					
165,1	133;145,6/121	101,6	103;108					
190,5	159/146	114;127	114;129					
215,9	178/159	127;140	129;147					
244,5	203/178	146;168	147;170					
269,9	219;229/203	146;168	170					
295,3;320	229;245;254/219;229	168	170					
349,2	245;254/229;245	168	170					
393.7и более	273;299/254;273	168	170					

Примечание. В числителе - для нормальных условий, в знаменателе- для осложнённых условий бурения.

Если $D_{H_1} < 0.75D_{H_0}$, где D_{H_1} и D_{H_0} соответственно наружный диаметр СБТ и УБТ, то следует использовать ступенчатую конструкцию КНБК, при этом между диаметрами секций УБТ снизу-вверх должно сохраняться то же соотношение. Определённые таким образом значения диаметров округляются до ближайших стандартных размеров, приведённых в табл. 1. В том случае, если КНБК получается многоступенчатым, количество труб в ступенях выше первой может быть равно длине одной свечи или трубы. При роторном бурении необходимо использовать УБТС во всех секциях.

Длину КНБК L_{θ} , как правило, определяют из условия, создания всей нагрузки на долото $G\theta$ весом УБТ и при этом, так чтобы их верхняя часть находилась в растянутом состоянии. Однако в связи с массовым распространением скважин со сложными профилями данное условие не является обязательным.

$$Lo = \frac{K_3 * G\delta}{K * K * q0}$$

Найденная по (1.1) длина корректируется с таким расчётом, чтобы длина УБТ составляла целое число.

Если на разных участках ствола скважины нагрузка на долото G_{d} и зенитный угол α разные, то необходимо взять ту пару их значений, которая даёт большее значение L₀. Если большое значение L₀ обусловлено высокими значениями зенитного угла / (например, при бурении пологих и горизонтальных скважин), то УБТ следует размещать на вертикальном участке или участке с малым зенитным углом на ближайшем расстоянии от необходимости на участке При между долотом устанавливаются толстостенные бурильные трубы (ТБТ), позволяющие минимизировать поперечные деформации, вызванные осевой нагрузкой, а также устанавливаются опорно – центрирующие элементы в местах возникновения указанных деформаций. (расчёт). Жесткость КНБК должна быть не ниже жёсткости обсадной колонны, спускаемой после бурения интервала. При бурении с использованием ЗД последний данного учитывается в расчётах как элемент КНБК.

Динамические напряжения вызваны динамическими нагрузками, причины возникновения которых очень разнообразны и трудно поддаются количественной оценке. Наиболее известные причины — вибрация от работы долот, резкие остановки при прохождении уступов, аварийные работы с применением ударных механизмов, гидравлические удары резкая посадка колонны труб на элеватор или клинья в клиновом захвате.

1.8. Пример расчёта бурильной колонны при использовании забойных двигателей.

Особенностью расчёта бурильной колонны при использовании забойных двигателей является то, что касательными напряжениями в силу их незначительности пренебрегают. Расчёт начинают с определения допустимой глубины спуска одноразмерной колонны или секции бурильных труб с учётом коэффициента запаса прочности на разрыв, затем производят расчёт на избыточное внутреннее и при необходимости наружное давления, а также проверочный расчёт на прочность в клиновом захвате.

Исходные данные:

- Пр. глубина скважины Н 1900 м
- КНБК и типоразмер бурильных труб приняты по опыту бурения и с учетом оснащенности бурового предприятия— турбобур ТРМ-195 18 м, вес 3100 кг + УБТ Ø178 10 м, q 145 кг/п.м.
 - Плотность бурового раствора 1300 кг/м^3 .
- Бурильные трубы Ø127 мм гр.пр. Дх9,2; Приведённый вес 1п. м,q = 31 кг.
 - Коэффициент запаса прочности на разрыв $K_3 = 1,3$.
- Коэффициент, учитывающий силы инерции и сопротивления при подъеме K_{π} 1,15.
 - Перепад давления на КНБК 5,9 МПа
 - -Максимальное давление в бурильных трубах на устье 10 мПа.
 - Глубина опорожнения бурильной колонны при работе ИП 1000м.
- 1.Определяется допустимая глубина спуска бурильной колонны, составленной из трубØ127 мм гр.пр. Дх9,2 из выражения:

$$l = \frac{Q_{p} - G(1 - \frac{\rho_{m}}{\rho_{M}}) - P_{o}S_{o}}{q(1 - \frac{\rho_{m}}{\rho_{M}})},$$

 $\Gamma \text{деQ}_{\text{p}} \!\! = \!\! \sigma_{\text{T}} \frac{F}{\text{K}_{_{3\text{II}}}} \! \cdot \!\!\! - \text{допускаемая растягивающая нагрузка с учётом запаса}$ прочности;

G- вес КНБК и забойного двигателя кг;

 P_0 - перепад давления в КНБК кг/см²;

 S_0 - площадь сечения канала бурильной трубы см²;

F₁- площадь сечения трубы по металлу

q- вес 1 метра бурильной трубы кг;

 $\rho_{\text{ж}}$ и $\rho_{\text{м}}$ – плотность промывочной жидкости и материала труб соответственно;

Определяется допустимое растягивающее усилие для данного типоразмера труб

$$F_{\text{p.kp}} = \frac{\sigma_{\text{\tiny T}} \times S}{K_{_{_{_{_{3\Pi}}}}} \cdot K_{_{_{I\!\!I}}}} = \frac{380 \times 0,785 \, \Phi_{_{_{\!\!I}}}^2 - D_{_{_{\!\!B}}}^2}{1,3 \times 1,15} = \frac{380 \times 0,785 \, \Phi_{_{\!\!I}}^2 - 0,1086^2}{1,49} = \frac{380 \times 0,0034}{1,49} = 867 \, \kappa H$$

Определяем допустимую длину бурильных труб длинного типоразмера

$$L_{\text{6.t.}} = \frac{F_{\text{p.kp}} - G_{\text{KHBK}} \left(1 - \frac{\rho_{\text{MC}}}{\rho_{\text{M}}}\right) \times P_{\text{o}} S}{q} = \frac{867 - 31 + 14.5 \left(1 - \frac{1300}{7850}\right) - 10 \times 0,093}{0.31 \left(1 - \frac{1300}{7850}\right)} = 3209 \text{ M}$$

Произведем проверочный расчет на разрыв с учетом растягивающего усилия от перепада давления в ГЗД и долоте

$$F_{\rm p} = G_{\rm 6.t.} + G_{\rm KHBK} + P_o S = -31 \times 1872 + 45,5 \times 0,834 + 0,0093 \times 10 = 614,9 \ \kappa H$$

Напряжение в теле трубы, площадь сечения которой составляет 0.0034m^2 определяем из выражения

$$\sigma_{_{H}} = \frac{F_{_{p}}}{S} = \frac{614.9}{0.0034} = 180 \ M\Pi a$$

Коэффициент запаса прочности составит

$$K_{3n} = \frac{\sigma_T}{\sigma_n} = \frac{380}{180} = 2.1 > 1.49$$

Условие запаса прочности выполнимо.

Проверка на внутреннее избыточное давление.

Расчёт производится путём определения величины напряжения, обусловленного максимально возможным внутренним избыточным давлением и его сравнением с допустимым для данного типоразмера труб.

$$\sigma_p = \frac{P_{BH*D_B}}{2K_{n*t}}$$
;

где $P_{\text{в.и.}}$ -ожидаемое внутреннее избыточное давление в колонне бурильных труб на рассчитываемой глубине;

 $D_{\rm B}$ – внутренний диаметр труб;

t – толщина стенки трубы;

K*p* – коэффициент разностенности труб (принимается 0, 875).

$$\sigma_p = 10.0,1086 / 2.0,785.0,0092 = 7,5 \text{ M}\Pi a$$

$$n = \frac{\sigma_{\text{доп}}}{\sigma_{\text{p}}} \ge 1,15$$

$$n=38/7,5=5,06>1,15$$

Проверка на наружное избыточное давление.

Для вычисления запаса прочности на наружное давление при условии опорожнения бурильной колонны на 1000м необходимо определить его значение для данной глубины и сравнить с допустимым для используемого типоразмера труб. Поскольку бурильная колонна до глубины H=1000м заполнена воздухом при атмосферном давлении PB=0; Затрубное пространство в том же интервале заполнено буровым раствором $\rho=1300$ кг/м³

$$P_{\text{н.и.}} = \rho \cdot g \cdot H = 1300 \cdot 9,8 \cdot 1000 = 12,74 \text{ M}\Pi a$$

Предельное (соответствующее пределу текучести) наружное давление для рассматриваемого типоразмера труб составляет 40,32МПа, следовательно

$$n = \frac{P_{\text{доп}}}{P_{\text{ни}}} = \frac{40,32}{12,74} = 3,16 > 1,15$$

Проверка на прочность в клиновом захвате

Для определения коэффициента запаса прочности в клиновом захвате используем табличное значение $Q_{m\kappa}$ с применением коэффициента обхвата C=0,9.

Табличное значение $Q_{\tau\kappa}$ для труб группы прочности «Д» с толщиной стенки 9,2мм составляет 1091кН или 109 100кг, с учётом коэффициента обхвата C=0.9

$$Q_{m\kappa} = 1091.0,9 = 981 \text{kH} = 98100 \text{k}\Gamma$$

Вычисляем коэффициент запаса прочности:

$$N = \frac{Q_{\text{TK}}}{Q_{\text{KHBK}} + Q_{6.\text{T.}}} = \frac{98,1}{4,95 + 58,032} = 1,56 > 1,15$$

Условие необходимого запаса прочности выполнены.

Допустимые веса бурильных колонн при использовании клинового захвата.

Длина	Группа						Диа	Диаметр труб, ММ.									
клиньев , мм	Прочности		89				114				12	27			1	40	
	Стали.				I	Толщина стенки трубы,мм.											
		7	9	11	7	8	9	10	11	7	8	9	10	8	9	10	11
	Д	59	74	88	73	83	93	102	112	80	91	102	112	99	111	122	134
	К	77	97	116	96	109	122	134	147	106	120	134	148	130	146	161	176
300	Е	85	107	128	106	120	134	148	161	116	132	148	163	143	160	177	193
	Л	100	126	151	125	142	159	175	191	137	156	174	192	169	189	209	229
	M	116	146	174	144	164	183	202	220	158	180	201	222	195	218	241	264
	Д	61	77	91	77	87	97	107	117	85	96	107	118	105	117	129	141
	К	80	101	120	101	114	128	141	153	111	126	141	156	138	154	170	186
400	Е	88	111	132	111	126	140	155	169	122	139	155	171	151	169	187	204
	Л	104	131	156	131	148	166	183	199	144	164	183	202	179	200	221	241
	M	120	151	180	151	171	191	211	230	167	189	211	233	206	231	255	278

1.9. Условные обозначения, используемые в разделе 1.

Символ	Значение символа	Единица измерения
$D_{\scriptscriptstyle H}$	Наружный диаметр трубы	MM; M
$D_{\mathfrak{s}}$	Внутренний диаметр трубы	MM; M
$D_{\partial o \pi}$	Диаметр долота	MM; M
$D_{c\kappa e}$	Диаметр скважины	MM; M
D_{cp}	Средний диаметр трубы	MM; M
$d_{\scriptscriptstyle 3M}$	Диаметр замка бурильных труб	Мм; м
S	Поперечное сечение тела трубы	MM ² ; M ²
S_{θ}	Площадь поперечного сечения канала трубы	MM ² ; M ²
$\sigma_{\scriptscriptstyle H}$	Нормальное напряжение	Па
σ_m	Предел текучести материала трубы	Па
$\sigma_{\partial on}$	Допустимое напряжение	Па
σ_{pes}	Результирующее напряжение	Па
σ_p	Предел прочности	Па
σ_{pad}	Радиальные нормальные напряжения	Па
τ	Касательные напряжения	Па
$F_{\kappa p}$	Сжимающее осевое усилие, при котором происходит продольная деформация труб.	Н
F_p	Растягивающее усилие под воздействием собственного веса и перепада давления на долоте и ГЗД.	Н
F _{p. кр}	Допустимое растягивающее усилие с учётом запаса прочности.	

z	Глубина рассматриваемого сечения	M
\boldsymbol{G}	Вес бурильных труб, УБТ, ГЗД, КНБК и других	Н
с индексом	элементов бур. колонны.	
L	Длина бурильных труб, УБТ, ГЗД, КНБК и других	M
с индексом	элементов бур. колонны.	
K_{3n}	Коэффициент запаса прочности, зависит от способа и условий бурения.	
K_{∂}	Коэффициент динамичности принимается равным 1,15	
P_0	Перепад давлений на ВЗД и долоте	Па
P _{6.u.}	Внутреннее избыточное давление	Па

2. Расчет профиля наклоннонаправленных скважин

2.1. Типы плоских профилей наклонно направленных скважин

Применяемые для бурения наклонно направленных скважин типы профилей делятся на две группы. К первой относятся профили *обычного типа*, представляющие кривую линию, расположенную в одной вертикальной плоскости, то есть плоские профили; ко второй — профили пространственного типа, представляющие пространственную кривую линию.

Основные типы плоских профилей приведены на рисунках 2.1-2.3.

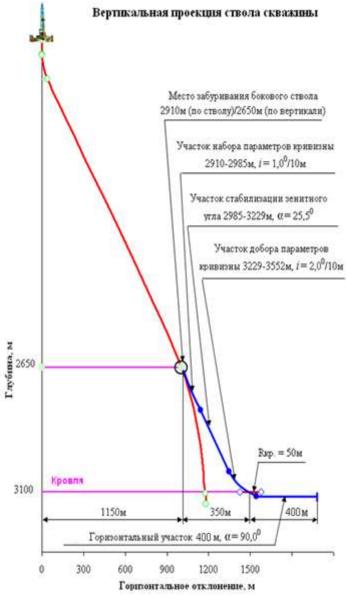


Рисунок 2.1 – Тангенциальный.

Профиль первого типа — тангенциальный (рисунок 2.1) — состоит из трех участков: вертикального — 1, участка набора зенитного угла — 2 и прямолинейно-наклонного участка (стабилизации зенитного угла) — 3, продолжающегося до проектного забоя в продуктивном пласте. Характерной

особенностью является включение участка набора угла неориентируемыми компоновками в участок 2, т. е. участок набора зенитного угла состоит из двух: (2a)производится набор зенитного угла с отклонителем (ориентированно), втором **(26)** набор угла на неориентируемыми компоновками. Включение этого участка позволяет сократить время на дорогостоящее бурение с отклонителем. Применение этого профиля позволяет ограничить до минимума количество рейсов с ориентируемыми отклоняющими КНБК, получить наибольшее отклонение забоя от вертикали при наименьшем зенитном угле и затратить наименьшее время на строительство скважины. Профиль второго типа (рис.2.2) – S-образный – состоит из четырех участков: вертикального -1, набора зенитного угла -2, стабилизации -3 и уменьшения угла — **4**.

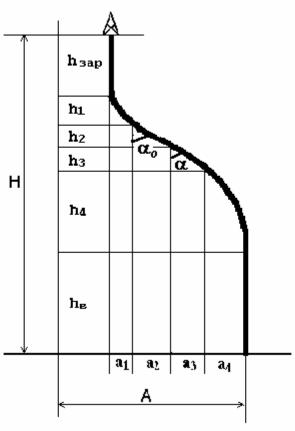


Рисунок 2.2 – S- образный профиль

Этот профиль применяется при бурении наклоннонаправленных скважин для месторождений, на которых происходит естественное искривление скважин.

Профиль третьего типа – J- образный (рис. 2.3).

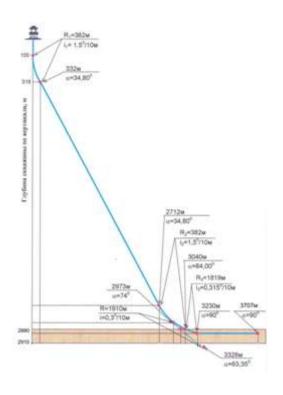


Рисунок 2.3 – Ј- образный профиль

Он состоит из пяти участков: верхнего вертикального — 1, набора зенитного угла — 2, прямолинейно наклонного — 3, снижения зенитного угла — 4 и нижнего вертикального — 5, позволяющего при пересечении стволом нескольких продуктивных горизонтов эксплуатировать любой из них с сохранением общей сетки разработки.

Этот сложный профиль, как правило, используется для скважин большой глубины (более 3000 м).

Выбор конфигурации профиля наклонно направленнойскважины

Местоположение отдельных участков профиля и их протяженность во многом зависит от горно-геологических условий и условий эксплуатации скважины. Участок набора зенитного угла следует располагать в том интервале геологического разреза, где при бурении с отклонителем обеспечивается наибольший набор зенитного угла за один рейс (породы средней твердости).

Прямолинейно-наклонный участок (участок стабилизации зенитного угла) является продолжением от участка набора зенитного угла до проектного гори зонта, либо связующим звеном между участками набора и снижения зенитного угла.

Участок уменьшения зенитного угла является, как правило, конечным, при этом ствол скважины вскрывает продуктивный горизонт под небольшим углом, либо обеспечивается выход на последний, приближенный к вертикали, участок.

2.2. Расчет профиля.

Расчет профилей обычного типа сводится к определению максимального зенитного угла скважины, горизонтальной и вертикальной проекций и длины каждого из участков, входящих в состав данного профиля, а также общей длины ствола скважины и общего отхода от вертикали.

Исходными данными для расчета профиля являются:

H – проектная глубина скважин;

h – глубина зарезки наклонного участка;

A — проектное смещение забоя от вертикали;

 i_{I} , R_{I} — интенсивность и радиус на участке набора зенитного угла с отклонителем;

 i_2 , R_2 — интенсивность и радиус на участке неориентируемого набора;

 i_3 , R_3 — интенсивность и радиус на участке уменьшения зенитного угла;

 α_{o} – угол набора кривизны с отклонителем;

 h_e – глубина второго вертикального участка;

 α_{κ} — угол в конце участка уменьшения зенитного угла.

 $R_{\partial on}$ - радиус круга допустимого отклонения от проектной точки в горизонтальной плоскости.

Профиль рассчитывают по участкам сверху вниз (рис.2.4).

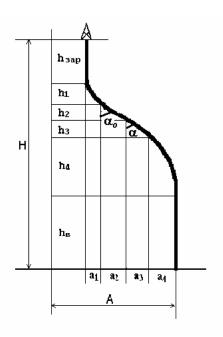


Рисунок 2.4 – Профиль скважины

Расчет профиля заключается в определении проекций участков на вертикальную и горизонтальную оси и длины участка по стволу:

 a_{I} , h_{I} , l_{I} — горизонтальное смещение, вертикальная проекция и длина по стволу на участке набора угла с отклонителем;

 a_2 , h_2 , l_2 — горизонтальное смещение, вертикальная проекция и длина по

стволу на участке неориентируемого набора угла;

 a_3 , h_3 , l_3 — горизонтальное смещение, вертикальная проекция и длина по стволу на участке стабилизации зенитного угла;

 a_4 , h_4 , l_4 — горизонтальное смещение, вертикальная проекция и длина по стволу на участке уменьшения угла.

Основным расчетным параметром профиля скважины является угол α вконце участка зарезки наклонного ствола или в конце участка неориентируемого набора угла, если он включен в профиль скважины. Таким образом, α — максимальный зенитный угол ствола скважины. Величина этого угла в основном определяет смещение конечного забоя от вертикали.

При проектировании скважины должно выполняться условие:

$$A = a_1 + a_2 + a_3 + a_4 = \sum a_i \pm R_{\partial on}$$
 (2.1)

Угол α находится подбором, то есть, изменяя значения угла α , добиваются выполнения условия (2.1), или по формуле:

$$A = \arccos \frac{R_1 R_1 - A + H_{1,2} \sqrt{H_{1,2}^2 + A^2 + 2AR_1}}{R_1 - A + H_{1,2}^2 + H_{1,2}^2}$$
(2.1)

где
$$H_{I,2} = h_I + h_2$$

$$\frac{R - b \pm \sqrt{b^2 - 4ac}}{2a}$$
(2.2)

Основные расчетные формулы для определения проекций участков приведены в таблице 2.1.

Таблица 2.1

Название расчётной величины, единицы измерения.	Формула
Длина ствола искривлённого участка, м	$l = (lpha_{\kappa o extit{ iny Hay}} - lpha_{ extit{ iny Hay}}) / i$
Горизонтальная проекция искривлённого участка,	$a = R \cdot (\cos \alpha_{\text{\tiny HAY}} - \cos \alpha_{\text{\tiny KOH}})$
\mathcal{M}	
Вертикальная проекция искривлённого участка, м	$h = R . (\sin \alpha_{\kappa o \mu} - \sin \alpha_{\mu a \mu})$
Длина прямолинейно-наклонного участка, м	$l = h/\cos\alpha$;
Связь вертикальной и горизонтальной проекций	$a=h$. $tg\alpha$
прямолинейно-наклонного участка, м	
Угол в конце участка набора кривизны, град	$\alpha_{\kappa o \mu} = \arcsin \left(\sin \alpha_{\mu a \nu} - h/R \right)$

В таблице α_{HAY} и α_{KOH} — углы в начале и конце участка соответственно.

Расчет трехинтервального профиля с прямолинейно наклонным участком –профиль первого типа (см. рис. 2.1).

Исходными данными для расчета профиля являются: проектная глубина — H; глубина зарезки наклонного участка — h; проектное горизонтальное смещение забоя от вертикали —A; зенитный угол в конце участка набора угла с

отклонителем— α_o ; интенсивность искривления (радиус искривления) ствола на участке набора ориентируемого и неориентируемого соответственно — $i_1(R_1)$, $i_2(R_2)$.

Расчет производят по формулам, приведенным в таблице 2.1.

- 1. Определяют проекции на первом вертикальном участке. Так как участоквертикальный, его горизонтальное смещение и зенитный угол равны 0, а вертикальная проекция и глубина по стволу равны глубине зарезки*h*.
- 2. Определяют проекции на участке 2a участке набора угла с отклонителем. Вертикальная проекция h_1 определяется по формуле:

$$h_1 = R_1 \cdot \sin \alpha_0, \tag{2.3}$$

Горизонтальная проекция a_I определяется по формуле:

$$a_1 = R_1. (1 - \cos \alpha_0), \tag{2.4}$$

Длина интервала по стволу l_I определяется по формуле: $l_I = \alpha_o / i_I$.

3. Определяют проекции на участке 26 – участке набора угла неориентируемой компоновкой:

$$h_2 = R_2$$
. (sin α - sin α_o); $a_2 = R_2$. (cos α_o - cos α); $l_2 = (\alpha - \alpha_o) / i_2$, (2.5)

 Определяют проекции на прямолинейно-наклонном участке 3 – участкестабилизации.

Вертикальная проекция определяется как разность между проектной глубиной скважины и суммой проекций на участках набора угла и глубиной зарезки, т. е.

$$h_3 = H - h - h_1 - h_2, (2.6)$$

Затем определяется горизонтальная проекция прямолинейного участка и длина по стволу:

$$a_3 = h_3 \cdot tg\alpha; l_3 = h_3 / \cos \alpha,$$
 (2.7)

- 5. Результаты расчетов представляют в виде таблицы 2.2.
- 6. Проверяют условие $A = a_1 + a_2 + a_3$. Если оно не выполняется, изменяютугол α и пересчитывают проекции участков **26** и **3**, процедуру выполняют дотех пор, пока не будет выполнено условие - Σ $ai = A \pm 10$.

Расчет четырехинтервального профиля

Исходными данными для расчета являются (см. рис. 2.2) H, h, A, α_o , i_1 (R_1),

$$i_2(R_2), i_3(R_3), \alpha k.$$

- 1. Определяют проекции вертикального участка.
- 2. Определяют проекции участка 2а набора зенитного угла с отклонителем по формулам:

$$h_1 = R_1$$
. $\sin \alpha_o$; $a_1 = R_1$. $(1 - \cos \alpha_o)$; $l1 = \alpha_o/i_1$.

3. Определяют проекции участка 26— набора зенитного угла неориентируемой компоновкой:

$$a_2 = R_2$$
. $(\cos \alpha_o - \cos \alpha)$; $h_2 = R_2$. $(\sin \alpha - \sin \alpha_o)$; $l_2 = (\alpha - \alpha_o) / i_2$.

4. Определяют проекции участка 4— уменьшения зенитного угла:

$$a_4 = R_3$$
. (cos $\alpha \kappa - \cos \alpha$); $h_4 = R_3$. (sin $\alpha - \sin \alpha \kappa$); $l_4 = (\alpha - \alpha \kappa) / i_3$.

5. Определяют проекции участка 3- прямолинейно-наклонного участка.

Вертикальная проекция определяется как разность между проектной глубиной скважины и суммой проекций на участках ориентированного и неориентированного набора угла, уменьшения угла и глубиной зарезки, т. е.

$$h_3 = H - h - h_1 - h_2 - h_4$$
.

Затем определяем горизонтальную проекцию и длину по стволу:

$$a_3 = h_3$$
.tg α ; $l_3 = h_3 / \cos \alpha$.

6. Проверяют выполнение условия $A = a_1 + a_2 + a_3 + a_4$, если оно не выполняется, изменяют угол α и пересчитывают проекции участков 26, 4 и 3. Процедуру выполняют до тех пор, пока не будет выполнено условие:

$$\sum ai = A \pm 10$$
.

7. Результаты расчетов представляют в виде таблицы

Расчет пятиинтервального профиля:

Исходными данными для расчета являются: H, h, A, α_o , i_1 (R_1), i_2 (R_2), i_3 R_3), αk , h_B (см. рис. 2.3). Порядок расчёта полностью совпадает с расчетом четырехинтервального профиля со следующим дополнением. Вертикальная проекция прямолинейно-наклонного участка определяется как разность между проектной глубиной скважины и проекциями на участках ориентированного и неориентированного набора угла, уменьшения угла, глубиной зарезки и глубиной второго вертикального участка, т. е.

$$h_3 = H - h - h_1 - h_2 - h_4 - h_B$$
.

Таблица 2.2 – Результаты расчета трехинтервального профиля

Участок	Интервал по вертикали, <i>м</i>		Общаяд лина интерва ла по	Зенитны <i>гра</i>	ый угол, ад.	Горизон смеще	тальное ение <i>м</i>	Длина по стволу <i>м</i>		
	ОТ	до	вертика ли <i>,м</i>	В начале	В конце	Интерв ала	Общая	Интерва ла	Общая	
Вертикальный	0	600	600	0	0	0	0	600	600	
Набор зенитного угла с отклонителем	600	719	119	0	12	13	13	120	720	
Неориентирова нный набор зенитного угла	719	909	190	12	23	62	75	200	920	
Стабилизации зенитного угла	909	1900	991	23	23	421	496	1077	1997	

2.3. Пример расчета трехинтервального профиля

Исходные данные для расчета приведены в таблице 2.3, а основные геометрические характеристики профиля скважины – на рисунке 2.4.

Таблица 2.3 – Исходные данные для расчета трехинтервального профиля

№ π/π	Параметр	Обозначение	Единица измерения	Значение
1	Глубина по вертикали	Н	M	1900
2	Глубина зарезки наклонно	h	M	600
	направленного ствола			
3	Горизонтальное смещение забоя	A	M	500
	скважины от вертикали			
4	Интенсивность искривления на	i_1	град/100м	10
	участке набора зенитного угла с			
	отклонителем			
5	Интенсивность искривления на	i_2	град/100м	5
	участке неориентированного			
	набора угла			
6	Угол набора с отклонителем	α ₀ .	град	12

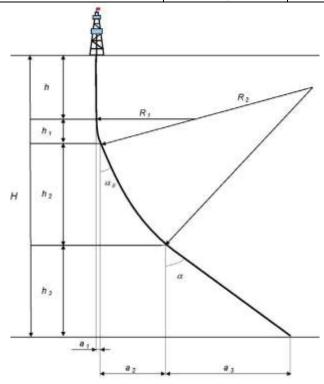


Рисунок 2.5 – Трехинтервальный профиль скважины

Расчет производим по участкам сверху вниз.

- 1.Вертикальный участок. Проекция участка на вертикальную ось $h = h = 600 \, M$, длина по стволу $\ell = h = 600 \, M$, горизонтальное смещение и зенитный угол равны 0.
- -Участок набор зенитного угла с отклонителем— ориентируемый наборзенитного угла (2a). Расчет проекций на искривленных участках производим по формулам, представленным в таблице 2.1.

-Находим радиус искривления на участке по формуле (1.2):

$$R = 57,3/i_1,$$

Интенсивность искривления равна $i_1 = 10 \ град/100 \ m = 0.1 \ град/м;$

После подстановки получаем $R_1 = 573 \, M$.

-Проекция участка на вертикальную ось:

$$h_1 = R_1^* \sin \alpha = 573 * \sin 12^\circ = 119 \text{ m}.$$

- -Горизонтальная проекция: $a_{1}=R_{I}$. $(1-\cos\alpha_{0})=573*(1-\cos12^{0})=13$ м.
- -Длина интервала по стволу $l = R_1 / i_1 = 12^0 / 0$, l = 120 M
- 2. Участок неориентированного набора зенитного угла (2б).
- -Находим радиус искривления

$$R_2 = 57.3/i_2$$
, =57.3/0.05=1146 M

-Проекция участка на вертикаль

$$h_2 = R$$
. (sin α – sin α_0); α = α_0 +10 0 =22 0 , тогда h_2 =1146(sin22 0 - sin12 0) =191м

Участок стабилизации зенитного угла (3). Находим проекцию на вертикальную ось:

$$h_3 = H - h - h_1 - h_2$$

тогда $h_3 = 1900 - 600 - 119 - 191 = 990 м.$

Горизонтальное смещение:

$$a_3 = h_3 * tg\alpha$$
,

тогда
$$a_3 = 990 *tg22° = 400 м$$
.

Проверка расчета заключается в проверке выполнения условия (2.1):

$$a_1 + a_2 + a_3 = A \pm 10.$$

Внашемслучае $a_1 + a_2 + a_3 = 13 + 57 + 400 = 470 \, \text{м}$.

Проектное смещение скважины по горизонтали должно быть 500 m, суммасмещений по участкам равна 470 m, то есть условие Σ $a_i = A \pm 10$ не выполняется. Таким образом, необходимо увеличить угол α , принимаем его равным $\alpha = 23^{\circ}$.

Пересчитываем проекции участков 26 и 3.

Участок 26:

$$H_2=1146*(\sin 23^{\circ}-\sin 12^{\circ})=190 \text{ M},$$

 $a_2=1146\cdot(\cos 12^{\circ}-\cos 23^{\circ})=62 \text{ M},$
 $1_2=23^{\circ}-12^{\circ}/0,05=200\text{M}.$

Участок 3:

$$h_3$$
= 1900 - 600 - 119 - 190 = 991 M ,
 a_3 = 991 * tg23° = 421 M ,

$$1_3 = 991/\cos 23 = 1077 \text{ M}$$

Выполняем проверку:

$$a_1 + a_2 + a_3 = 13 + 62 + 421 = 496 M.$$

Условие (2.1) выполняется, расчет закончен, заносим характеристики профиля в таблицу.

3.Показатели работы долот.

Оценка работы долота по данным наблюдения в течение одного долбления

Производительность долота характеризуется проходкой на долото Н, которая означает длину пробуренного данным долотом ствола скважины до его полного износа, измеряется в метрах.

Стойкостью долота Т – временем механического бурения данным долотом, измеряется в часах.

Механической скоростью $v_{\rm M}$ характеризует среднюю скорость разрушения горной породы, измеряется в м/час.

$$v_{M} = H/T, \tag{3.1}$$

C механической скоростью связана интенсивность разрушения горной породы — проходка за один оборот долота, обозначается как H_0 измеряется в мм/об.

$$H_0 = v_{\scriptscriptstyle M}/n_{\scriptscriptstyle \Pi}, \tag{3.2}$$

где - n_{π} - число оборотов долота за 1 час.

Для характеристики общего темпа углубления скважины используется такой показатель какэкономическая рейсовая скорость v_{pp} ;

$$v_{psi} = H_i / ((T\delta_i + \sum_{T_{HO}}) + S_{\pi} / A)$$
 (3.3)

где $T_{\text{тно}}$ - время на спуск и подъём инструмента для замены долота, а также на все вспомогательные работы в течение данного рейса.

Наиболее общий интегральный показатель работы долота- себестоимость метра проходки, но чаще используется показатель стоимости одного метра проходки по затратам, зависящим от времени –S

$$S_i = (S_{\pi} + A(T\delta_i + \sum T_{THO}))/H_i,$$
 (3.4)

где

 H_{i} – нарастающее значение проходки за время T_{6i} ($H_{i} = \sum H_{ti}$);

 ΔT - промежуток времени за который замерялась проходка;

 $T_{\text{бi}}$ — нарастающее значение времени бурения ($T_{\text{бi}} = \sum \Delta T_{\text{ni}}$);

 $S_{\text{д}}$ – стоимость долота;

А- стоимость одного часа работы буровой установки;

ΔТ- промежуток времени, за который замерялась проходка. (Шаг времени);

n_i-- порядковый номер замера проходки;

 H_{ti} – текущее значение единичной проходки за время ΔT ;

Сущность задания заключается в том, что содержащиеся в задании данные (табл. 3.1, 3.2) позволяют рассчитать текущие значения $v_{p_{9}i}$ и S_i . Сравнение предыдущих и последующих значений позволяет установить их максимальные и минимальные величины, а также время их достижения. Если

время достижения этих значений не превышает время стойкости долота R в часах, то это время принимается за рациональное, если оно не превышает время стойкости долота на 0,25 часа. Допускается передержка долота до достижения 0,9 v_{psi} и 1,1 S_i по сравнению с их экстремальными значениями.

В данном задании получение ложных экстремумов, вызванных неоднородностью горных пород не предусмотрены.

Пример выполнения задания

Для удобства с использованием содержащихся в сводках данных (табл. 3.1, 3.2)составим таблицу 3.3 соответствующих значений для выбранного варианта и последовательно вычислим текущие значения $v_{p_{9i}}$ и S_i применяя приведённые выше формулы.Полученныезначения также занесём в таблицу. Используя полученные данные построим графики зависимости значений $v_{p_{9}}$ uS_i от времени бурения. В промысловых условиях графики строятся по мере вычисления значений $v_{p_{9}}$ uS_i через заданные промежутки времени ΔT или анализируются путём сравнения полученных и предыдущих значений.

Таблица 3.1 – Сводка данных

Вариант	Вариантсводки	ΔT	$+\sum T_{m\mu o}$	S,	A,	R,
задания	данныхо	МИН	часы	стоим.долот	стоим.часаработы	стойкость
	долблении(табл.2)			а,руб.	буровой,руб./час.	долота,час.
1	1	30	3	45000	11000	8,0
2	2	30	2,5	40000	12000	7,5
3	3	40	2,6	30000	12000	7,0
4	4	45	3,0	35000	15000	7,5
5	5	40	3,5	45000	14000	8,5
6	6	20	1,5	55000	13000	10,5
7	7	15	1,7	45000	14000	8,0
8	3	20	1,3	30000	13000	6,5
9	4	25	1,9	30000	15000	6,0
10	5	35	3,0	45000	15000	8,0
11	5	40	5,0	55000	17500	8,5
12	6	40	5,0	45000	15000	8,0
13	8	30	4,0	50000	15000	11,5
14	9	50	4,5	75000	21000	12
15	5	40	4,6	150000	19000	15
16	6	30	7,0	85000	18500	11
17	7	30	6,5	65000	16000	9,0
18	8	15	6,5	55000	15000	8,2
19	9	60	6,3	85000	20000	8,0
20	10	50	6,4	75000	19000	7,0
21	11	50	6,6	65000	19000	5,0
22	7	45	6,0	95000	16000	10,5

Таблица 3.2 — Сводка данных о проходке (м) за время $\Delta \textbf{\textit{T}}$ в течение одного долбления

	Вариант сводки данных												
1	2	3	4	5	6	7	8	9	10	11			
13	7,0	9,0	18,0	7,4	14,8	7,0	10,0	4,5	6,0	3,2			
15,0	8,5	10,0	20,0	8,0	15,7	7,5	12,0	4,8	6,8	3,5			
13,0	8,0	9,3	18,5	6,3	12,5	7,0	11,0	4,6	6,7	3,5			
11,0	7,2	8,3	16,6	4,8	10,0	6,6	10,9	4,6	6,6	3,5			
9,3	6,2	7,9	14,5	4,2	8,6	6,1	9,1	4,5	6,6	3,6			
8,0	5,3	6,4	12,9	3,6	7,6	5,4	9,0	4,4	6,6	3,6			
7,0	4,7	5,8	11,6	3,1	6,3	5,0	8,1	4,3	6,4	3,6			
6,0	4,0	5,4	10,7	2,7	5,5	4,5	7,1	4,2	6,3	3,4			
5,3	3,5	4,9	9,8	2,3	4,6	4,1	6,3	4,1	6,2	3,5			
5,0	3,0	4,5	9,0	1,9	3,8	3,7	5,2	4,0	6,0	3,3			
3,8	2,6	3,9	7,5	1,6	3,2	3,2	4,1	4,0	5,8	3,2			
3,0	2,3	3,5	7,0	1,5	3,0	2,5	3,0	3,8	5,9	3,0			
2,5	1,8	3,3	6,6	1,3	2,6	2,0	2,0	3,6	5,8	2,9			
2.3	1,5	3,0	6,0	1,2	2,4	1,5	1,0	3,5	5,8	2,9			
2,0	1,2	2,7	5,4	1,1	2,2	1,0	0,3	3,3	5,8	3,0			
1,8	1,1	2,4	4,8	1,0	2,0	0,4	0,1	3,1	5,6	2,9			
1,5	0,9	2,1	4,2	0,9	1,4	0,2	0,1	2,9	5,4	2,8			
1,3	0,8	1,8	3,6	0,7	1,2	0,2	0,1	2,9	5,0	2,7			
1,0	0,7	1,6	3,2	0,7	1,2	0,1	-	2,7	4,5	2,5			
0,8	0,6	1,5	2,4	0,6	1,1	-	-	2,6	4,0	2,3			

Таблица 3.3 – Результаты расчетов

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
H_{i}	18	38	56,5	73,1	87,6	100,5	112,1	122,8	132,6	141,6	141,9	156,1	162,7	158,7	174,1	178,9	183,1	186,7	189,9	192,3
T _i	0,75	1,5	2,25	3	3,75	4,5	5,25	5	6,75	7,5	8,25	9	9,75	10,5	11,25	12	12,75	13,5	14,25	15
V_{p9}	1,8	3,6	5,01	6,08	6,86	7,43	7,86	8,18	8,41	8,57	8,22	8,67	8,67	8,13	8,59	8,51	8,41	8,29	8,16	8,01
S_1	7594	3874	2791	2301	2040	1883	1781	1712	1664	1633	1703	1616	1615	1721	1630	1644	1664	1688	1715	1748

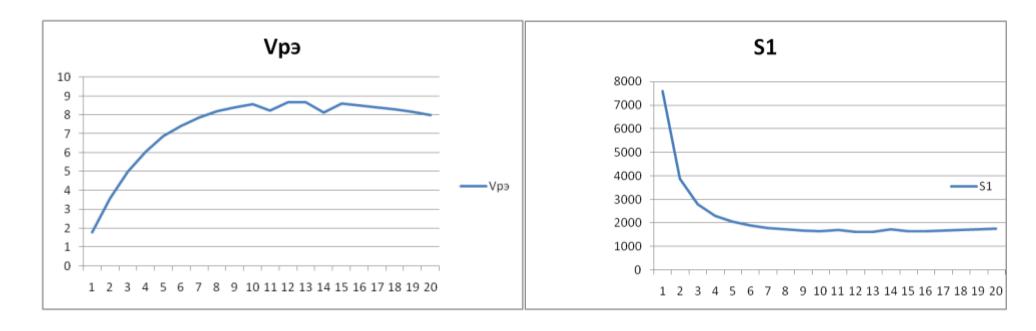


Рис. 3.1. Результаты расчетов

В нашем примере v_{p_3} достигает максимального значения через 9 часов работы долота и сохраняется на протяжении 0,75 часа. К окончанию времени стойкости долота v_{p_3} достигает значения 0,92 от своего максимального значения.

Стоимость метра проходки S_i достигает минимального значения через 9,75 часа с начала работы долота и к окончанию времени стойкости долота достигает значения 1,082, это означает, что долото практически отработало свой ресурс времени оптимально и увеличивать рекомендованное время работы до получения значений 0,9 v_{n_3} и 1,1 S_i нецелесообразно.

4. Контрольные задания

4.1.Расчёт бурильной колонны

1.Используя данные таблицы4.1 выбрать тип (диаметр) турбобура, диаметр и длину УБТ, выполнить проверочный расчёт бурильной колонны на прочность, на основании расчёта выбрать оптимальную толщину стенки и группу прочности труб. При расчёте допустимой длины колонны принять толщину стенки 10мм. По результатам расчёта составить графическую схему компоновки бурильной колонны, с указанием интервалов установки бурильных труб и элементов КНБК.

2.Скважина вертикальная, условия бурения неосложнённые.

Таблица 4.1 № п/п	Глубина скв-ны, м	Диаметр долота, мм	Нагрузка На долото, кН	Диаметр бур. труб, мм	Плотность бурового р-ра, кг/м ³	Диаметр предыдущей обсадной колонны/толщина стенки, мм
1	2100	295	150	140	1400	324/10
2	2500	295	180	140	1250	324/11
3	2400	243	120	140	1300	273/10
4	2500	269	130	140	1250	299/9
5	2750	295	140	140	1430	324/10
6	2100	190	120	127	1100	219/10
7	2000	190	100	127	1400	219/11
8	1900	215,9	120	127	1350	245/9
9	2100	190	100	114	1270	219/10
10	2150	190	120	127	1320	219/10
11	2250	215,9	150	140	1200	245/9
12	1800	190	100	114	1300	219/9
13	3000	215	120	127	1150	245/10
14	3200	190	130	127	1120	219/9
15	3500	215	120	127	1200	245/10
16	2200	215	100	114	1300	245/10
17	2170	295	200	140	1300	245/10
18	1500	190	800	114	1200	219/10
19	2500	190	900	114	1300	219/10
20	1500	394	250	140	1300	426/10

4.2. Расчёттрёхинтервального профиля скважины с прямолинейно наклонным участком

На основе данных, содержащихся в таблице 4.2 определить вертикальные проекции H g; H_1 ; H_2 ; горизонтальные проекции A_1 ; A_2 ; длину по стволу участка набора кривизны l; длину прямолинейно наклонного участка L. На основании полученных результатов составить схему вертикальной проекции.

Таблица 4.2

					таолица т.2
		Горизонтальное	Интенсивность	Зенитный	Длина
	Проектная	смещение забоя	искривления	угол в конце	вертикального
$\mathcal{N}_{\underline{0}}$	глубина	от вертикали на	на участке	участка	участка
Π/Π	скважины по	проектной	набора	набора	(место набора
	вертикали <i>H</i> ; м	просктной глубине A ; м	кривизны i ;	кривизны α ;	кривизны)
		_	Град./10м	град.	Нв;м
1	2000	300	1.5	30	100
2	1500	150	1,5	20	180
3	2100	300	1,2	25	200
4	2150	300	1,1	20	200
5	2200	250	1,0	15	150
6	1900	250	1,0	23	150
7	1800	350	1,5	32	200
8	2300	100	1,0	15	170
9	1950	150	1,2	18	150
10	3000	400	1,2	15	300
11	2400	250	1,2	12	200
12	2500	250	1,5	18	150
13	2150	120	1,3	9	рассчитать
14	3600	500	1,0	15	1200
15	3150	400	1,2	10	100
16	2750	250	1,2	13	800
17	1500	100	1,0	10	200
18	3200	800	1,0	12	250
19	3150	800	1,0	11	900
20	2700	900	1,0	10	800

Таблица 4.3. –Результаты расчёта.

Участок	Интер	вал по	Длина	Зенитнь	ый угол,	Горизонта	Длина по		
	вертикали,м		интервала	гр	ад	смещен	стволу,м		
	от до		по	начало конец		Интервала	общее		
			вертикали, м						
Вертикальный									
Набор									
зенитного угла									
Прямолинейный									
наклонный									
участок									

4.3. Расчёт показателей работы долот.

С использованием данных табл.4.4 и 4.5 определить время достижения максимальных значенийрейсовой скорости $V_{\rm p_9}$ и минимальных значений стоимости S

Таблица 4.4. Сводка данных с показателями стоимости

Вариант	Вариантсводки	ΔT	$+\sum T_{mho}$	S,	А,	R,
задания	данныхо	мин	часы	стоим.долот	стоим.часаработы	стойкость
	долблении(табл.2)			а,руб.	буровой,руб./час.	долота,час.
1	1	30	3	45000	11000	8,0
2	2	30	2,5	40000	12000	7,5
3	3	40	2,6	30000	12000	7,0
4	4	45	3,0	35000	15000	7,5
5	5	40	3,5	45000	14000	8,5
6	6	20	1,5	55000	13000	10,5
7	7	15	1,7	45000	14000	8,0
8	3	20	1,3	30000	13000	6,5
9	4	25	1,9	30000	15000	6,0
10	5	35	3,0	45000	15000	8,0
11	5	40	5,0	55000	17500	8,5
12	6	40	5,0	45000	15000	8,0
13	8	30	4,0	50000	15000	11,5
14	9	50	4,5	75000	21000	12
15	5	40	4,6	150000	19000	15
16	6	30	7,0	85000	18500	11
17	7	30	6,5	65000	16000	9,0
18	8	15	6,5	55000	15000	8,2
19	9	60	6,3	85000	20000	8,0
20	10	50	6,4	75000	19000	7,0
21	11	50	6,6	65000	19000	5,0
22	7	45	6,0	95000	16000	10,5

Таблица 4.5 — Сводка данных о проходке (м) за время $\Delta \textbf{\textit{T}}$ в течение одного долбления

	Вариант сводки данных												
1	2	3	4	5	6	7	8	9	10	11			
13	7,0	9,0	18,0	7,4	14,8	7,0	10,0	4,5	6,0	3,2			
15,0	8,5	10,0	20,0	8,0	15,7	7,5	12,0	4,8	6,8	3,5			
13,0	8,0	9,3	18,5	6,3	12,5	7,0	11,0	4,6	6,7	3,5			
11,0	7,2	8,3	16,6	4,8	10,0	6,6	10,9	4,6	6,6	3,5			
9,3	6,2	7,9	14,5	4,2	8,6	6,1	9,1	4,5	6,6	3,6			
8,0	5,3	6,4	12,9	3,6	7,6	5,4	9,0	4,4	6,6	3,6			
7,0	4,7	5,8	11,6	3,1	6,3	5,0	8,1	4,3	6,4	3,6			
6,0	4,0	5,4	10,7	2,7	5,5	4,5	7,1	4,2	6,3	3,4			
5,3	3,5	4,9	9,8	2,3	4,6	4,1	6,3	4,1	6,2	3,5			
5,0	3,0	4,5	9,0	1,9	3,8	3,7	5,2	4,0	6,0	3,3			
3,8	2,6	3,9	7,5	1,6	3,2	3,2	4,1	4,0	5,8	3,2			
3,0	2,3	3,5	7,0	1,5	3,0	2,5	3,0	3,8	5,9	3,0			
2,5	1,8	3,3	6,6	1,3	2,6	2,0	2,0	3,6	5,8	2,9			
2.3	1,5	3,0	6,0	1,2	2,4	1,5	1,0	3,5	5,8	2,9			
2,0	1,2	2,7	5,4	1,1	2,2	1,0	0,3	3,3	5,8	3,0			
1,8	1,1	2,4	4,8	1,0	2,0	0,4	0,1	3,1	5,6	2,9			
1,5	0,9	2,1	4,2	0,9	1,4	0,2	0,1	2,9	5,4	2,8			
1,3	0,8	1,8	3,6	0,7	1,2	0,2	0,1	2,9	5,0	2,7			
1,0	0,7	1,6	3,2	0,7	1,2	0,1	-	2,7	4,5	2,5			
0,8	0,6	1,5	2,4	0,6	1,1	_	-	2,6	4,0	2,3			

Вариант исходных данных для выполнения контрольной работы указывается при выдаче задания. Контрольная работа выполняется на листах формата А4,сшитых в скоросшивателе.

5. СПИСОК ЛИТЕРАТУРЫ

- 1. Айзуппе Э.А., Полячек Д.Н. Трубы нефтяного сортимента. Том 1. Трубы бурильные: монография. Самара: ООО «Издательство Ас Град», 2012.
- 2. Бурильные трубы из алюминиевых сплавов/ В.Ф. Штамбург, Г.М.. Файн, С.М. Данилянц, А.А. Шеина. М.: Недра, 1980. 240 с.
- 3. ГОСТ Р 54383- 2011 (ИСО 11961:2008) Трубы стальные бурильные для нефтяной и газовой промышленности.
- 4. ГОСТ Р 50278- 92 Трубы бурильные с приваренными замками.