В.И. НИКИТИН

МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ НА ОСНОВАНИИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Лабораторный практикум

Самара Самарский государственный технический университет 2017

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Бурение нефтяных и газовых скважин»

В.И. НИКИТИН

МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ НА ОСНОВАНИИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Лабораторный практикум

Самара
Самарский государственный технический университет
2017

Печатается по решению редакционно-издательского совета СамГТУ

УДК 622.24 (076.5) ББК 33.131я73 Н 62

Никитин В.И.

Н 62 **Моделирование физических процессов на основании экспериментальных данных:** лабораторный практикум / *В.И. Никитин.* — Самара: Самар. гос. техн. ун-т, 2017. — 131 с.: ил.

Включает в себя основные методы построения моделей на основании эмпирических данных. Специалисты нефтегазовой отрасли непрерывно сталкиваются с приложениями фундаментальных законов при решении технических задач. При этом построение модели феноменологическим методом является достаточно сложной задачей, либо неразрешимой из-за неполноты данных о самом процессе. Поэтому построение эмпирических моделей является замечательным инструментом для решения практических задач. Представленные методы аппроксимации полностью применимы для обобщения данных, полученных в результате лабораторных исследований. Рассмотрена методика статистического доказательства адекватности моделей, а также значимости коэффициентов уравнений регрессии.

Предназначено для студентов очной формы обучения по направлению подготовки 21.03.01 «Нефтегазовое дело», «Бурение нефтяных и газовых скважин».

Рецензент канд. техн. наук А.А. Подъячев.

УДК 622.24 (076.5) ББК 33.131я73 Н 62

- © В.И. Никитин, 2017
- © Самарский государственный технический университет, 2017

ПРЕДИСЛОВИЕ

В работе технического специалиста может возникнуть задача поиска оптимальных параметров для физического процесса. При этом
моделирование процесса на основании фундаментальных законов
химии или механики является очень сложной и нетривиальной задачей. Таким образом, возникает необходимость построения математической модели, которая будет адекватно отражать реальный физический процесс. В технических приложениях о поведении исследуемой
системы чаще всего судят на основании серии экспериментов. Для
детерминированных и детерминированно-стохастических процессов
применимы методы корреляционного и регрессионного анализов,
позволяющих построение адекватных моделей, а также дающих рекомендации по их доработке.

Важно отметить, что построение моделей на основании экспериментальных данных требует знаний в области математической статистики. Целью проведения эксперимента является определение реального значения физического параметра, значимого для исследуемого процесса. В результате проведения лабораторных испытаний вместо реального значения получается выборка из случайных величин, требующая дальнейшей статистической обработки. Далее для построения модели, являющейся откликом выходного параметра от некоторого количества входных, необходимо учитывать вероятностную природу исходных данных.

ВВЕДЕНИЕ

Слово «аппроксимация» происходит от латинского *approximo* — «приближаюсь». Аппроксимировать означает приближенно заменить. Задачи аппроксимации возникают при обработке результатов экспериментов, когда измерения какой-либо величины выполнены в конечном числе точек. Требуется найти промежуточные значения этой функции. Это так называемая задача о восстановлении функции. Кроме того, при проведении расчетов сложные функции удобно заменять (аппроксимировать) алгебраическими многочленами или другими элементарными функциями, которые достаточно просто вычисляются (задача о приближении функции). Методы аппроксимации используются для приближенного интегрирования и решения дифференциальных уравнений, а также являются основой компьютерной графики и других современных цифровых технологий.

Специалисты нефтегазовой отрасли непрерывно сталкиваются с приложениями фундаментальных законов при решении технических задач. Аппроксимация экспериментальных данных позволяет смоделировать процесс и реализовать дальнейшее научное исследование расчётным путем.

Основы теории построения регрессионных моделей были заложены К. Гауссом и А. Лежандром. Гаусс занимался проблемой оценки математического ожидания физической величины её приближением к реальному значению. Отсюда вытекает сущность метода наименьших квадратов: сумма квадратов отклонений измеренных величин должна быть минимальна относительно математического ожидания. Технически при большом количестве входных параметров расчеты эмпирических моделей по методу наименьших квадратов являются трудоёмкими, и их реализация для конкретных физических процессов — затруднительной.

В XX веке с развитием вычислительной техники получили развитие новые методы построения моделей, такие как метод конечного элемента, также появились автоматизированные программные про-

дукты, в алгоритме которых реализован метод наименьших квадратов. Большое распространение получили численные методы решения сложных систем уравнений, как алгебраических, так и дифференциальных и интегральных. В основе реализации численных методов лежит методика аппроксимации исходной задачи при помощи конечноразностных схем определённой точности. Таким образом, с развитием науки и технологии методы аппроксимации развиваются кумулятивным путём, то есть на основании прошлых открытий строятся последующие алгоритмы для решения наиболее сложных задач, актуальных на современном этапе развития науки.

методы точной интерполяции

На интервале [a,b] заданы точки x_i , i=1,...,N; $a \le x_i \le b$, и значения неизвестной функции в этих точках $f(x_i)=f_i$, i=1,...,N. Требуется найти функцию F(x), принимающую в точках x_i те же значения f_i . Точки x_i будем называть узлами интерполяции, а условие $F(x_i)=f_i$ – основным условием интерполяции. При этом F(x) будем искать только на отрезке [a,b]. Если необходимо найти функцию вне отрезка, то такая задача называется задачей экстраполяции.

Поставленная задача имеет много решений, так как через заданные точки (x_i,f_i) , i=1,...,N можно провести бесконечно много кривых, каждая из которых будет графиком функции, для которой выполнены все условия интерполяции. Одним из простейших методов интерполяции является кусочно-линейная интерполяция. Для практики важен случай аппроксимации функции многочленами, т.е. выражениями вида $P_{\scriptscriptstyle m}(x) = a_{\scriptscriptstyle 0} + a_{\scriptscriptstyle 1} x + a_{\scriptscriptstyle 2} x^2 + ... + a_{\scriptscriptstyle m} x^{\scriptscriptstyle m}$, где $a_{\scriptscriptstyle i}$ — постоянные коэффициенты. Наиболее известными методами полиномиальной интерполяции являются канонический полином, полином Лагранжа, Ньютона, Эрмита.

Все методы интерполяции можно разделить на локальные и глобальные. В случае локальной интерполяции на каждом интервале $[x_i, x_{i+1}]$ строятся отдельные функции. В случае глобальной интерполяции отыскивается единый полином на всем интервале [a,b].

Лабораторная работа № 1 КУСОЧНО-ЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ

Цель работы: на основании эмпирической зависимости, построить кусочно-линейную интерполирующую функцию методом кусочно-линейной интерполяции. Найти значения в промежуточных точках. Произвести проверку и подтвердить результаты графически.

Для выполнения работы использовать на выбор *OpenOffice Calc*, *Microsoft Excel* или символьные пакеты вычислений, такие как *Maxima* или *Wolfram Mathematica*.

Описание метода

Пусть имеется экспериментальная зависимость $f_i(x_i)$ из N точек. На каждом интервале $[x_i, x_{i+1}]$ интерполирующая функция является линейной $F_i(x) = k_i x + l_i$. Значения коэффициентов k_i и l_i находятся из выполнения условий интерполяции на концах отрезка $[x_i, x_{i+1}]$: $F_i(x_i) = f_i$, $F_i(x_{i+1}) = f_{i+1}$. С помощью этих условий получаем систему уравнений:

$$\begin{cases}
k_{i}x_{i} + l_{i} = f_{i}; \\
k_{i}x_{i+1} + l_{i} = f_{i+1},
\end{cases}$$
(1.1)

откуда находим

$$k_{i} = \frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}}, \ l_{i} = f_{i} - \left(\frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}}\right) x_{i}.$$
 (1.2)

Следовательно, интерполирующую функцию F(x) можно записать в виде

$$F(x) = \frac{f_{i+1} - f_i}{x_{i+1} - x_i} (x - x_i) + f_i,$$
 (1.3)

а в общем случае, для произвольного $x: x_i \le x \le x_{i+1}$, т.е.

$$F(x) = \begin{cases} \frac{f_{2} - f_{1}}{x_{2} - x_{1}}(x - x_{1}) + f_{1}, & x_{1} \leq x \leq x_{2}; \\ \dots & \dots \\ \frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}}(x - x_{i}) + f_{i}, & x_{i} \leq x \leq x_{i+1}; \\ \dots & \dots \\ \frac{f_{N} - f_{N-1}}{x_{N} - x_{N-1}}(x - x_{N}) + f_{N}, & x_{N-1} \leq x \leq x_{N} \end{cases}$$

$$(1.4)$$

ИЛИ

$$F(x) = \begin{cases} k_{1}x + l_{1}, & x_{1} \leq x \leq x_{2}; \\ \dots & \dots \\ k_{i}x + l_{i}, & x_{i-1} \leq x \leq x_{i}; \\ \dots & \dots \\ k_{N-1}x + l_{N-1}, & x_{N-1} \leq x \leq x_{N}. \end{cases}$$

$$(1.5)$$

При использовании линейной интерполяции сначала нужно определить интервал, в который попадает x, а затем подставить его в формулу. Итоговая функция является непрерывной, но ее производная разрывна в каждом узле интерполяции. Погрешность такой интерполяции будет меньше, чем в случае кусочно-постоянной интерполяции.

Методика выполнения работы

1. Определить коэффициенты k_i, l_i для функции F(x) на каждом интервале $x_i^* \in [x_i, x_{i+1}]$.

Выписать полученную интерполирующую функцию в аналитическом виде (1.5):

$$F(x) = \begin{cases} k_{1}x + l_{1}, & x_{0} \leq x \leq x_{1}; \\ k_{i}x + l_{i}, & x_{i-1} \leq x \leq x_{i}; \\ & \dots \\ k_{N-1}x + l_{N-1}, & x_{N-1} \leq x \leq x_{N}. \end{cases}$$

- 2. Выполнить проверку условия интерполяции в 2 этапа:
- 1) вычислить значения функции F(x) в узловых точках x_i ;
- 2) вычислить невязку $F(x_i) f_i$.
- 3. Вычислить середины интервалов $x_i^* \in [x_i, x_{i+1}]$.
- 4. Вычислить значения F(x) для середин интервалов, вычисленных в п. 3.
- 5. Построить точечный график, отобразить на нём исходную (эмпирическую) зависимость (x_i, f_i) и середины отрезков $x_i^* \in [x_i, x_{i+1}]$ с вычисленными в них значениями интерполирующей функции $F(x^*)$. Названия рядов точек на графиках подписать.
 - 6. Сделать выводы по работе.

Требование к работе: при выполнении работы необходимо вводить все расчетные формулы таким образом, чтобы при изменении входных параметров программа корректно производила расчеты автоматически. Вручную вводятся только исходные данные и подписи.

Пример 1

В лабораторных условиях на фильтр-прессе получена зависимость объема фильтрации ингибирующего полимерного раствора от времени. Эксперимент длился 30 мин., в течение которых зафиксировано 7 значений.

Ниже представлен пример оформления работы с п. 1 по п. 6 (рис. 1.1-1.6).

n	t, мин	Q, мл
1	0	0
2	1	2,8
3	3	3,8
4	7,5	5
5	15	6,8
6	25	8,4
7	30	9

Рис. 1.1. Входные данные

Вычисление коэффициентов интерполирующей функции

			1 2	. 10	•
k 1	2,8	1 1	0,0		
k 2	0,5	1 2	2,3		
k 3	0,2667	1 3	3,0		
k 4	0,24	1 4	3,2		
k 5	0,16	1 5	4,4		
k 6	0,12	1 6	5,4		

Рис. 1.2. Коэффициенты интерполирующей функции

		Интерп	Интерполирующая кусочно-линейная функция					
	1	2,8	t+	0	при	0	$\leq x \leq$	1
		0,5	t+	2,3	при	1	$\leq x \leq$	3
$O(t) = \int$)	0,2667	t+	3	при	3	$\leq x \leq$	7,5
$\mathcal{L}(\iota)$)	0,24	t+	3,2	при	7,5	$\leq x \leq$	15
		0,16	t+	4,4	при	15	$\leq x \leq$	25
	(0,12	t+	5,4	при	25	$\leq x \leq$	30

Рис. 1.3. Запись интерполирующей функции в аналитическом виде

Значения интерполирующей функции в узловых точках					
	t, мин	Q(t)	Невязка		
	0	0	0		
	1	2,8	0		
	3	3,8	0		
	7,5	5	0		
	15	6,8	0		
	25	8,4	0		
	30	9	0		

Рис. 1.4. Проверка основного условия интерполяции

x_{i}^{*}	$Q(x^*)$
0,5	1,4
2	3,3
5,25	4,4
11,25	5,9
20	7,6
27,5	8,7

Рис. 1.5. Середины интервалов и значения интерполирующей функции в них

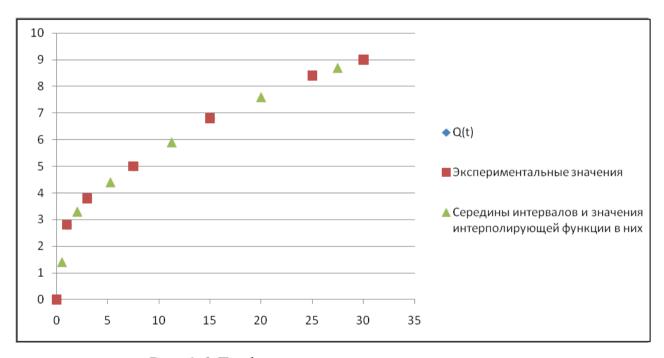


Рис. 1.6. Графическое представление расчетов

На рис. 1.6 изображено три набора точек, но видно только два из них, так как в данном примере основное условие интерполяции выполняется полностью и исходные экспериментальные значения совпадают и интерполирующей функцией в тех же точках.

Выводы по работе. По исходным данным методом кусочнолинейной интерполяции построена интерполирующая функция Q(t), которая представляет зависимость объема фильтрации от времени фильтрационного процесса. Для найденной функции проверено ос-

новное условие интерполяции — значения функции в узловых точках совпадают с экспериментальными значениями. Также в качестве дополнительной проверки проведена интерполяция для середин интервалов узловых точек, результат показан в виде графика. Полученная кусочная функция может быть использована для нахождения неизвестных значений из интервалов времени от 0 до 30 мин.

Контрольные вопросы

- 1. Постановка задачи аппроксимации.
- 2. Примеры аппроксимации реальных экспериментальных данных.
- 3. Понятие интерполяции.
- 4. Что такое интерполируемая функция и интерполирующая функция?
- 5. Что называется узлами и шагом интерполяции?
- 6. Глобальная и локальная интерполяция, примеры.
- 7. Основное условие интерполяции.
- 8. Как можно повысить точность интерполяции?
- 9. Понятие экстраполяции.
- 10. В чем заключается преимущество метода кусочно-локальной интерполяции по сравнению с кусочно-постоянной?

Лабораторная работа № 2 КАНОНИЧЕСКИЙ ПОЛИНОМ

Цель работы: на основании эмпирической зависимости, построить полиномиальную интерполирующую функцию методом канонического полинома. Найти значения в промежуточных точках. Произвести проверку и подтвердить результаты графически.

Для выполнения работы использовать на выбор *OpenOffice Calc*, *Microsoft Excel* или символьные пакеты вычислений, такие как *Maxima* или *Wolfram Mathematica*.

Описание метода

Пусть имеется экспериментальная зависимость $f_i(x_i)$ из N точек. Будем искать интерполирующую функцию в виде полинома (многочлена) m-ной степени:

$$P_m(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m.$$
 (2.1)

Какова должна быть степень многочлена, чтобы удовлетворить всем условиям интерполяции? Допустим, что заданы две точки: (x_0, f_0) и (x_1, f_1) , т.е. N=2. Через эти точки можно провести единственную прямую, т.е. интерполирующей функцией будет полином первой степени $P_1(x) = a_0 + a_1 x$. Через три точки (N=3) можно провести параболу $P_2(x) = a_0 + a_1 x + a_2 x^2$ и т. д. Рассуждая таким способом, можно предположить, что искомый полином должен иметь степень m=N-1.

Для того, чтобы доказать это, выпишем систему уравнений на коэффициенты. Уравнения системы представляют собой условия интерполяции при каждом $x = x_i$:

$$\begin{cases}
P_{m}(x_{1}) = a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + a_{3}x_{1}^{3} + \dots + a_{N}x_{1}^{m} = f_{1}; \\
P_{m}(x_{2}) = a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + a_{3}x_{2}^{3} + \dots + a_{m}x_{2}^{m} = f_{2}; \\
P_{m}(x_{N}) = a_{0} + a_{1}x_{N} + a_{2}x_{N}^{2} + a_{3}x_{N}^{3} + \dots + a_{N}x_{N}^{m} = f_{N}.
\end{cases} (2.2)$$

Данная система является линейной относительно искомых коэффициентов $a_0, a_1, a_2, ..., a_N$. Известно, что система линейных алгебраических уравнений (СЛАУ) имеет решение, если ее определитель отличен от нуля. Таким образом, нахождение полинома сводится к решению системы линейных алгебраических уравнений относительно коэффициентов $a_0, a_1, a_2, ..., a_N$.

Решить систему можно в матричном виде. В матричном виде система имеет вид

$$Xa = f (2.3)$$

где X — матрица коэффициентов СЛАУ;

f – известный вектор из постановки задачи;

 $a = (a_0, a_1, a_2, ..., a_N)$ – вектор коэффициентов (неизвестных).

Решение данной системы можно найти, используя обратную матрицу X^{-1} , тогда

$$a = X^{-1}f. (2.4)$$

Методика выполнения работы

- 1. Реализовать формулу для автоматического заполнения матрицы коэффициентов X системы линейных алгебраических уравнений Xa=f из исходных экспериментальных значений. Вычислить X^{-1} , определить коэффициенты полинома $a=(a_0,a_1,a_2,...,a_N)$, $a=X^{-1}f$. Подставить полученные коэффициенты в исходное выражение для канонического полинома $P_m(x)=a_0+a_1x+a_2x^2+...+a_mx^m$. Записать его в аналитическом виде.
 - 2. Выполнить проверку условия интерполяции в два этапа:
 - 1) вычислить значения функции $P_m(x)$ в узловых точках;
 - 2) вычислить невязку $P_{_{m}}(x_{_{i}}) f_{_{i}}$
 - 3. Вычислить середины интервалов $x_i^* \in [x_i, x_{i+1}]$.
- 4. Вычислить значения $P_m(x)$ для середин интервалов, вычисленных в п. 3.

- 5. Построить точечный график, отобразить на нём два ряда данных:
 - 1) исходные данные задачи (x_i, f_i) ;
- 2) середины отрезков $x_i^* \in [x_i, x_{i+1}]$ с вычисленными в них значениями интерполирующего полинома $P_{\scriptscriptstyle m}(x_i^*)$, а также значения полинома в узловых точках $P_{\scriptscriptstyle m}(x_i)$. Названия подписать.
 - 6. Сделать выводы по работе.

Требование к работе: при выполнении работы необходимо вводить все расчетные формулы таким образом, чтобы при изменении входных параметров программа корректно производила расчеты автоматически. Вручную вводятся только исходные данные и подписи.

Пример 2

В качестве исходных данных возьмём первые пять точек из примера 1. Ниже представлен пример оформления работы с п. 1 по п. 6 (рис. 2.1 - 2.7).

n	t, мин	Q, мл
1	0	0
2	1	2,8
3	3	3,8
4	7,5	5
5	15	6,8

Рис. 2.1. Входные данные примера

	Матрица коэффициентов СЛАУ							
1	0	0	0	0				
1	1	1	1	1				
1	3	9	27	81				
1	7,5	56,25	421,875	3164,1				
1	15	225	3375	50625				
1	$\boldsymbol{\mathcal{X}}$	χ^2	χ^3	χ^4				

 $Puc.\ 2.2.$ Матрица X системы линейных алгебраических уравнений Xa = f

	Обрат			
1	0	0		
-1,533333333	1,85	-0,347	0,02735	-0,001
0,608888889	-0,99	0,4167	-0,0383	0,0017
-0,078518519	0,14	-0,073	0,01155	-6E-04
0,002962963	-0,01	0,0031	-0,0006	5E-05

 $Puc.\ 2.3.\$ Обратная матрица — X^{-1}

Вектор коэффил	циентов
0	
4,001520147	
-1,365477411	
0,170292633	
-0,006335368	

$$P_{m}(x) = 0 + 4,00152 x + -1,36548 x^{2} + 0,1702926 x^{3} + -0,0063354 x^{4}$$

 $Puc.\ 2.4.$ Вектор решений СЛАУ Xa=f , т.е. $a=(a_{\scriptscriptstyle 0},a_{\scriptscriptstyle 1},a_{\scriptscriptstyle 2},...,a_{\scriptscriptstyle N})$, коэффициенты полинома

Значения полинома в узловых точках					
t, мин	$P_{m}(x_{i})$	Невязка			
0	0,000	0,000			
1	2,800	0,000			
3	3,800	0,000			
7,5	5,000	0,000			
15	6,800	0,000			

Рис. 2.5. Проверка основного условия интерполяции

x_i^*	$P_{\scriptscriptstyle m}(x_{\scriptscriptstyle i}^*)$
0,5	1,680281339031
2	3,802105820106
5,25	3,200960937500
11,25	13,185956816621
7,5	5,0000000000000

Рис. 2.6. Значения полинома в серединах интервалов

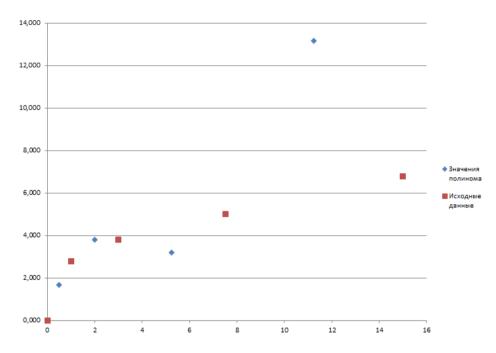


Рис. 2.7. Графическое представление расчетов

Выводы по работе. По исходным данным методом канонического полинома построена интерполирующая функция $P_{m}(x)$, которая представляет зависимость объема фильтрации от времени фильтрационного процесса. Основное условие интерполяции полностью выполняется, но проверка значений интерполирующей функции показала неудовлетворительный результат, так как начиная с третьей точки полином начал принимать значения, не соответствующие физической постановке задачи. Этот вывод сделан на основании знаний о фильтрационном процессе. Объём фильтрата от времени монотонно возрастает, а полученная полиномиальная зависимость принимает изгибы на соответствующих интервалах. На основании проведённой ра-

боты можно сделать вывод, что полученная функция применима только на начальных промежутках исходной зависимости. Этот вывод подтверждается графически на рис. 2.5.

Примечание. В действительности, при возрастании входных параметров задачи метод канонического полинома имеет большие погрешности, так как СЛАУ расширяется с добавлением каждой точки, что приводит к усложнению вычислительной задачи. Таким образом, необходимым условием для применения данного метода является проверка полученного полинома в промежуточных точках. Нагляднее результат проверки изображать графически.

Контрольные вопросы

- 1. Полином как математической объект.
- 2. К локальной или глобальной интерполяции относится канонический полином?
- 3. Существует ли связь между числом узлов интерполяции и степенью интерполяционного полинома?
 - 4. Как изменится степень полинома при добавлении нового узла?
 - 5. Можно ли использовать метод канонического полинома для экстраполяции?
 - 6. Какой степени будет полином, если интерполяция проводится по 8 узлам?
- 7. Методы проверки качества аппроксимации полиномом и вывод о пригодности построенной интерполирующей функции.
- 8. Преимущества и недостатки метода по сравнению с кусочно-постоянной и кусочно-линейной интерполяцией.
- 9. Какие методы полиномиальной интерполяции кроме канонического полинома вы знаете?
- 10. Как учитывается погрешность эксперимента при интерполяции каноническим полиномом?

РЕГРЕССИОННЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

Если исходные данные получены результате опытных измерений, полученных с некоторой погрешностью, то в этом случае точного выполнения основного условия интерполяции не требуется. Другими корреляционной словами, при наличии связи измерений существенной погрешности некорректно интерполирующую кривую через табличные значения. случаях интерполирующая функция F(x) не должна удовлетворять условиям $F(x_i) = f(x_i)$, i = 1, 2, ..., N. Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности.

Вид формулы иногда известен из физических соображений или выбирается из геометрических соображений на основании корреляционного поля. Для этого экспериментальные точки наносятся на график, и путем сравнения поведения точек с графиками известных функций подбирается общий вид зависимости. Успех в значительной степени определяется опытом и интуицией исследователя. После того, как выбран вид эмпирической зависимости, коэффициенты аппроксимирующей функции определяются исходя из метода наименьших квадратов (МНК) — сумма квадратов отклонений модельной функции от исходных данных должна быть минимальной.

Для построения эмпирических зависимостей используются методы корреляционного и регрессионного анализа. Данные методы основаны на принципах статистического анализа, поэтому неотъемлемой частью построения аппроксимирующих функций являются доказательства статистических гипотез о значимости коэффициентов полученных уравнений, а также проверка на адекватность. На основании построения границ корреляционного поля можно существенно улучшить модель путем исключения грубых экспериментальных ошибок.

Методы корреляционного и регрессионного анализа применяются не только для нахождения зависимостей линейного вида, но и показывают хороший результат при подборе нелинейной формы уравнения для описания физического процесса. Работа с нелинейными зависимостями более трудоёмкая и математически сложная, поэтому рекомендуется решение подобных задач с использованием специального программного обеспечения.

Лабораторная работа № 3 ЛИНЕЙНАЯ ОДНОПАРАМЕТРИЧЕСКАЯ РЕГРЕССИЯ

Цель работы: на основании экспериментальных данных, построить линейную однопараметрическую регрессионную модель. Провести корреляционный анализ исходных данных. Проверить выполнение статистических гипотез для полученной модели.

Для выполнения работы использовать на выбор *OpenOffice Calc*, *Microsoft Excel* или символьные пакеты вычислений, такие как *Maxima* или *Wolfram Mathematica*.

Описание метода

Самой простой регрессионной моделью для описания физического процесса на основании эмпирических данных является линейное однопараметрическое уравнение:

$$y = bx. (3.1)$$

Уравнение данного вида выбирается для описания экспериментальных значений в случае, когда исходная зависимость проходит через точку (0,0), либо будет проходить через неё при экстраполяции. Также для целесообразности построения однопараметрической линейной функции следует произвести корреляционный анализ эмпирических данных, т.е. визуальную оценку корреляционного поля, а также вычисления коэффициента корреляции.

В случае выбора построения модели вида (3.1) согласно методу наименьших квадратов коэффициент уравнения определяется формулой

$$b = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}.$$
 (3.2)

Для улучшения полученной модели следует построить границы корреляционного поля, для этого необходимо вычислить дисперсию адекватности модели S_{ao}^2 , дисперсию коэффициента $b-S_b^2$ и квадратичное отклонение S_b . Следует отметить, что при вычислении S_b^2

должна использоваться дисперсия опытная, полученная во время постановки серии экспериментов, но чаще всего на данном этапе вычислений она недоступна, поэтому можно сделать по критерию Фишера предположение об адекватности модели, а следовательно об однородности дисперсий $S_{on}^2 = S_{ao}^2$. В случае достаточного количества исходных данных можно произвести процедуру отсеивания грубых ошибок несколько раз, с каждым разом улучшая линейную связь и уточняя коэффициент b.

Конечную модель следует проверить при помощи статистических гипотез на значимость коэффициента корреляции, значимость коэффициента уравнения регрессии, а также на адекватность. Проверка на адекватность модели по критерию Фишера возможна только при наличии $S_{\scriptscriptstyle on}^{\scriptscriptstyle 2}$.

Методика выполнения работы

1. Для начала следует установить корреляционную связь. При наличии сильной корреляционной связи достаточно построить корреляционное поле и сделать визуальную оценку о наличии связи. Для количественной оценки вычисляется коэффициент корреляции:

$$r_{xy} = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sqrt{\left[n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \cdot \left[n\sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]}}.$$
 (3.3)

Таблицу для определения тесноты линейной связи см. в приложении 1.

2. Вычислить коэффициент уравнения регрессии вида y = bx. Согласно методу наименьших квадратов,

$$b = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}.$$
 (3.4)

3. Вычислить дисперсию S_b^2 и квадратичное отклонение S коэффициента b. В вычислениях следует использовать значения опытной выборочной дисперсии S_{on}^2 . В случае если S_{on}^2 неизвестна, согласно гипотезе о физической сущности моделируемого процесса положить $S_{on}^2 = S_{ao}^2$. Дисперсия адекватности для данного уравнения регрессии имеет количество степеней свободы $\upsilon = n-1$, тогда

$$S_{a\delta}^{2} = \frac{\sum (y_{i} - y_{ipacu})^{2}}{D}.$$
 (3.5)

Вычислить дисперсию S_h^2 :

$$S_b^2 = S_{on}^2 \frac{1}{\sum_{i=1}^n x_i^2}.$$
 (3.6)

4. Вычислить стандартные границы корреляционного поля и отсеять «выпадающие точки» для уточнения модели. При этом должно произойти уменьшение дисперсий и увеличение силы линейной связи в соответствии с изменением коэффициента корреляции. Стандартные границы корреляционного поля вычисляются по формулам

$$y_{i,min} = (b - S_b)x_i, y_{i,max} = (b + S_b)x_i.$$
 (3.7)

Для удобства следует указать границы в табличном виде, а также построить график, на котором следует отразить исходную табличную зависимость (x_i, y_i) , верхние и нижние границы $(x_i, y_{i,\min}), (x_i, y_{i,\max})$, а также линию регрессии $(x_i, y_{i,\max})$.

- 5. Точки исходной табличной зависимости, не лежащие в границах корреляционного поля, следует отсеять и вычислить параметры модели заново, тем самым более точно рассчитать основные параметры.
- 6. Для полученной модели следует оценить качество аппроксимации с помощью критерия Стьюдента:

1) проверить нулевую гипотезу $H_{_0}$: $r_{_{xy}} = 0$ для коэффициента корреляции $r_{_{xy}}$; для этого вычислить опытный критерий Стьюдента по формуле

$$t^{on} = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}}. (3.8)$$

Если $t^{on} < t^{\alpha}_{v}$, то принимается нулевая гипотеза, если $t^{on} > t^{\alpha}_{v}$, то альтернативная. t^{α}_{v} — табличное значение критерия Стьюдента, см. приложение 2.

Число степеней свободы для коэффициента корреляции равно $\upsilon=n-2$. Вероятность допущения ошибки называется уровнем значимости α и равняется $\alpha=1-P$, где P — доверительная вероятность. Альтернативной гипотезой будет неравенство: $H_0: r_{xy} \neq 0$. Уровень значимости принять $\alpha=0.05$;

2) проверить нулевую гипотезу $H_{_0}$: b=0 для коэффициента b уравнения регрессии y=bx . Для этого вычислить

$$t_b^{on} = \frac{|b|}{S_b} \tag{3.9}$$

и по критерию Стьюдента сравнить с критическим значением t_v^α для заданного уровня значимости $\alpha=0.05$. Число степеней свободы для коэффициента уравнения регрессии y=bx, $\upsilon=n-1$, так как на модель наложена одна связь — вычисление коэффициента b. Метод проверки аналогичен задаче проверки для r_{xy} ;

3) если известна опытная дисперсия S_{on}^2 , полученная на этапе проведения экспериментов, то следует проверить на адекватность полученное уравнение по критерию Фишера. Для этого вычисляется опытный критерий Фишера:

$$F_{\nu_{1},\nu_{2}}^{on} = \frac{S_{a\partial}^{2}}{S_{on}^{2}}, ecnu \quad S_{a\partial}^{2} > S_{on}^{2},$$

$$F_{\nu_{1},\nu_{2}}^{on} = \frac{S_{on}^{2}}{S_{a\partial}^{2}}, ecnu \quad S_{a\partial}^{2} < S_{on}^{2},$$
(3.10)

где v_1 – число степеней свободы числителя;

 $\nu_{_2}$ - число степеней свободы знаменателя.

Опытный критерий Фишера сравнивают с табличным значением критерия Фишера F^{α} , взятого с требуемым уровнем значимости α . Если опытный критерий Фишера меньше табличного, то дисперсии однородны и соответственно модель адекватна эксперименту, если больше — дисперсии неоднородны и модель неадекватна. Табличные значения критерия Фишера представлены в приложении 3.

7. Сделать выводы по работе.

Пример 3

Смоделируем процесс фильтрации бурового раствора на фильтрпрессе в координатах $(Q)-(\sqrt{t})$. Из аналитической формулировки процесса фильтрации при формировании фильтрационной корки предположим, что зависимость является линейной и очевидно проходит через начало координат в точке (0,0).

На рис. 3.1-3.2 представлены расчётные таблицы для вычисления коэффициента корреляции и построения модели и границ корреляционного поля. На рис. 3.3 изображена исходная табличная зависимость и результаты расчетов $(x_i, y_i), (x_i, y_{i,pacq}), (x_i, y_{i,min}), (x_i, y_{i,max})$. Согласно предложенной методике точки, не лежащие в пределах границ корреляционного поля, причисляются к грубым ошибкам и удаляются из рассмотрения. В данном примере точки под номерами 2, 7, 8 явно не лежат в границах, поэтому они

для корректировки модели были удалены из рассмотрения, также было несколько пограничных точек, которые допустимо оставить для дальнейших расчётов. Таким образом, уточнив модель, получили $r_{xy}=0.99989$, b=2.02699, $S_{ad}^2=0.00364$, $S_b^2=4.52464\mathrm{E}-05$, $S_b=0.00672654$.

	Исходные д	цанные	Вспомога	Вспомогательные таблици			
\sqrt{t}	$, MUH^{1/2}$	Q, мл	x^2	<i>y</i> ²	xy		
	0	0	0	0	0		
	1	1,5	1	2,25	1,5		
	1,7321	3,5	3	12,25	6,0622		
	2,2361	4,6	5	21,16	10,286		
	2,7386	5,6	7,5	31,36	15,336		
	3,1623	6,4	10	40,96	20,239		
	3,873	8,2	15	67,24	31,758		
	4,4721	9,3	20	86,49	41,591		
	5	10,2	25	104,04	51		
	5,4772	11	30	121	60,249		
Суммы	29,691	60,3	116,5	486,75	238,02		
n=	10	r	тель =	589,83			
			атель =	590,77			
			$r_{xy} =$	0,9984			

Рис. 3.1. Исходные данные и вспомогательные таблицы для вычисления коэффициента корреляции

Выполним проверку статистических гипотез.

1) $H_{0}: r_{xy} = 0$, вычислим

$$t^{on} = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1-r_{xy}^2}} = \frac{0.99989\sqrt{5}}{\sqrt{1-0.99989^2}} = 147,49558. \Longrightarrow t^{on} >> t_5^{0.05}.$$

Значение опытного критерия Стьюдента попадает в критическую область, в область отклонения гипотезы $H_0: r_{xy} = 0$, следовательно значение коэффициента корреляции $r_{xy} = 0,99989$ случайностью не является и с вероятностью 95 % имеется возрастающая линейная почти функциональная связь;

2)
$$H_{\scriptscriptstyle 0}: b=0$$
, вычислим $t_{\scriptscriptstyle b}^{\scriptscriptstyle on}=\frac{|b|}{S_{\scriptscriptstyle b}}=\frac{2,02699}{0,00672654}=301,341>>t_{\scriptscriptstyle 6}^{\scriptscriptstyle 0.05}$.

Значение опытного критерия Стьюдента попадает в критическую область, в область отклонения гипотезы $H_{\scriptscriptstyle 0}$: b=0, следовательно коэффициент уравнения регрессии значимо отличен от нуля;

		\2		
${\mathcal Y}_{_{pacu}}$	$(y_i - y_{ipe})$	y_{\min}	${\cal Y}_{ ext{max}}$	
0	0	0	0	
2,0431	0,295	2,0225	2,0637	
3,5388	0,0015	3,503	3,5745	
4,5685	0,001	4,5224	4,6147	
5,5953	2E-05	5,5387	5,6518	
6,4609	0,0037	6,3956	6,5261	
7,9129	0,0824	7,833	7,9929	
9,137	0,0266	9,0447	9,2294	
10,216	0,0002	10,112	10,319	
11,191	0,0363	11,077	11,304	
Сумма	0,4467			
b=	2,0431			
$S_{a\dot{a}}^2 =$	0,0496			
$S_{h}^{2} =$	0,0004			
$S_{b} =$	0,0206			
0				

Рис. 3.2. Построение модели и вычисление границ корреляционного поля

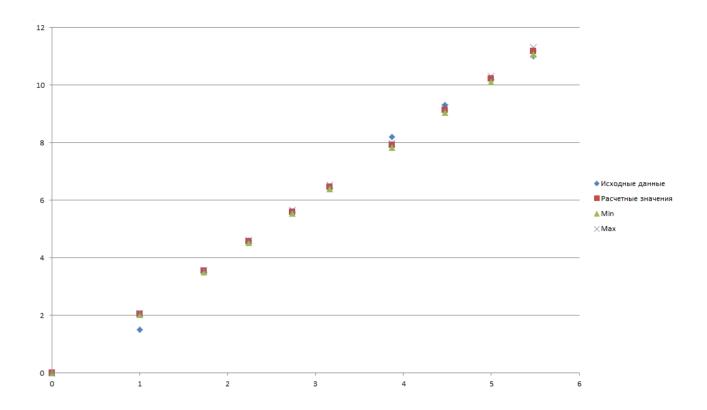


Рис. 3.3. Графическое представление расчетов

3) так как S_{on}^2 неизвестна, проверка на адекватность модели по критерию Фишера невозможна. Можно сделать выводы, что модель достаточно достоверно описывает исходные данные (рис. 3.3).

Выводы по работе. На основании экспериментальных данных построена линейная однопараметрическая регрессионная модель, описывающая процесс фильтрации бурового раствора на фильтрпрессе в координатах $(Q) - (\sqrt{t})$. В результате корреляционного анализа установлена почти функциональная возрастающая линейная связь. Отсев грубых ошибок позволил уточнить параметры модели. Доказательство статистических гипотез для параметров модели показало положительный результат. Проверка на адекватность модели по критерию Фишера невозможна из-за нехватки входных данных, но на основании графической и расчетной проверки модели можно сделать вывод о пригодности данной модели на практике.

Контрольные вопросы

- 1. Понятие корреляции, корреляционного поля, таблицы.
- 2. Метод проведения корреляционного анализа.
- 3. Понятие регрессии, уравнение регрессии, линия регрессии.
- 4. Смысл применения метода наименьших квадратов для вывода формулы коэффициента уравнения регрессии.
- 5. Примеры реальных процессов, описываемых линейной однопараметрической моделью.
 - 6. Целесообразность проверки статистических гипотез.
 - 7. Методика проведения проверки статистических гипотез.
 - 8. Число степеней свободы.
 - 9. Стандартные границы корреляционного поля.
- 10. Возможно ли построить границы корреляционного поля с заданной доверительной вероятностью?

Лабораторная работа № 4 ЛИНЕЙНАЯ ДВУХПАРАМЕТРИЧЕСКАЯ РЕГРЕССИЯ

Цель работы: на основании экспериментальных данных построить линейную двухпараметрическую регрессионную модель. Провести корреляционный анализ исходных данных. Проверить выполнение статистических гипотез для полученной модели.

Для выполнения работы использовать на выбор *OpenOffice Calc*, *Microsoft Excel* или символьные пакеты вычислений, такие как *Maxima* или *Wolfram Mathematica*.

Описание метода

Для описания физического процесса, имеющего линейный характер, но не проходящего через начало координат в точке (0,0), используют двухпараметрическую регрессионную модель:

$$y = b_0 + b_1 x. (4.1)$$

Также для целесообразности построения двухпараметрической линейной функции следует произвести корреляционный анализ эмпирических данных, т.е. визуальную оценку корреляционного поля, а также вычисления коэффициента корреляции.

В случае построения модели вида (4.1) необходимо на основании эмпирических данных выбрать уравнения для нахождения коэффициентов b_0 , b_1 . Если исходная зависимость расположена в положительной системе координат, то согласно методу наименьших квадратов следует пользоваться следующими формулами:

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{\Delta},$$
(4.2)

$$b_{1} = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\Delta},$$
(4.3)

$$\Delta = n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2.$$
 (4.4)

Если исходная зависимость располагается как в положительном, так и в отрицательном секторах декартовой системы координат, то формулы (4.2) - (4.4) дают неверные результаты и расчет следует производить по следующим формулам:

$$A = \frac{1}{n} \sum_{i=1}^{n} |x_{i}|; \quad B = \frac{1}{A^{2}} \sum_{i=1}^{n} x_{i}^{2}; \quad C = \frac{1}{A} \sum_{i=1}^{n} x_{i} y_{i};$$

$$D = \sum_{i=1}^{n} y_{i}; \quad E = \frac{1}{A} \sum_{i=1}^{n} x_{i}; \quad F = nB - E^{2};$$

$$b_{0} = \frac{BD - EC}{F}; \quad b_{1} = \frac{nC - ED}{AF}.$$

$$(4.5)$$

Для улучшения полученной модели следует построить границы корреляционного поля. Для этого необходимо вычислить дисперсию адекватности модели S_{ao}^2 , дисперсию коэффициентов b_{o} , b_{i} — $S_{b_{o}}^2$, $S_{b_{i}}^2$ и квадратичное отклонение $S_{b_{o}}$, $S_{b_{i}}$. Следует отметить, что при вычислении дисперсий коэффициентов должна использоваться дисперсия опытная, полученная во время постановки серии экспериментов, но чаще всего на данном этапе вычислений она недоступна, поэтому можно сделать по критерию Фишера предположение об адекватности модели, а следовательно об однородности дисперсий $S_{on}^2 = S_{ao}^2$. В случае достаточного количества исходных данных можно произвести процедуру отсеивания грубых ошибок несколько раз, с каждый разом улучшая линейную связь и уточняя коэффициенты b_{o} , b_{i} .

Таким образом, дисперсия адекватности для двухпараметрической модели вычисляется по формуле

$$S_{ao}^{2} = \frac{\sum (y_{i} - y_{i pacu})^{2}}{D}, \tag{4.6}$$

где число степеней свободы $\upsilon = n - 2$.

Если исходная зависимость расположена в положительной системе координат, то дисперсия коэффициентов $S_{b_0}^2, S_{b_1}^2$ и квадратичные отклонения, соответствующие им, вычисляются по формулам

$$S_{b_0}^2 = S_{on}^2 \frac{\sum_{i=1}^n x_i^2}{\Delta}, \qquad S_{b_1}^2 = S_{on}^2 \frac{n}{\Delta}, S_{b_0} = \sqrt{S_{b_0}^2}, \qquad S_{b_1} = \sqrt{S_{b_1}^2}.$$
 (4.7)

Если исходная зависимость располагается как в положительном, так и в отрицательном секторах декартовой системы координат и использовались формулы (4.5), то

$$S_{b_0}^2 = S_{on}^2 \frac{B}{F}, \qquad S_{b_1}^2 = S_{on}^2 \frac{n}{FA^2}.$$
 (4.8)

Стандартные границы корреляционного поля вычисляются по формулам

$$y_{i,\min} = (b_0 - S_{b_0}) + (b_1 - S_{b_1}) x_i,$$

$$y_{i,\max} = (b_0 + S_{b_0}) + (b_1 + S_{b_1}) x_i.$$
(4.9)

Далее в целях построения более корректной модели следует произвести отсев «выпадающих» точек, то есть исходных точек, не входящих в границы (4.9).

Конечную модель следует проверить при помощи статистических гипотез на значимость коэффициента корреляции, значимость коэффициента уравнения регрессии, а также на адекватность по критерию Фишера. Нулевая гипотеза для коэффициента корреляции и критерий адекватности проверяются так же, как для однопараметрической модели, а опытный критерий для проверки значимости коэффициентов модели вычисляется по формуле

$$t_{b_0}^{on} = \frac{|b_0|}{S_{b_0}}, t_{b_1}^{on} = \frac{|b_1|}{S_{b_1}}.$$
 (4.10)

Методика выполнения работы

- 1. Для начала следует установить корреляционную связь. При наличии сильной корреляционной связи достаточно построить корреляционное поле и сделать визуальную оценку наличия связи. Для количественной оценки вычисляется коэффициент корреляции по формуле (3.3). Таблицу для определения тесноты линейной связи см. в приложении 1.
- 2. Вычислить коэффициенты уравнения регрессии вида $y = b_0 + b_1 x$ согласно методу наименьших квадратов по формулам (4.2) (4.4) или (4.5).
- 3. Вычислить по формулам (4.7) дисперсии $S_{b_0}^2$, $S_{b_1}^2$ и квадратичные отклонения им соответствующие. В вычислениях следует использовать значения опытной выборочной дисперсии S_{on}^2 . В случае если S_{on}^2 неизвестна, согласно гипотезе о физической сущности моделируемого процесса положить $S_{on}^2 = S_{ao}^2$. Дисперсия адекватности для данного уравнения регрессии вычисляется по формуле (4.6).
- 4. Вычислить стандартные границы корреляционного поля и отсеять «выпадающие точки» для уточнения модели. При этом должно произойти уменьшение дисперсий и усиление силы линейной связи в соответствии с изменением коэффициента корреляции. Стандартные границы корреляционного поля вычисляются по формулам (4.9). Для удобства следует указать границы в табличном виде, а также построить график, на котором следует отразить исходную табличную зависимость (x_i, y_i) , верхние и нижние границы $(x_i, y_{i,\min}), (x_i, y_{i,\max}),$ а также линию регрессии $(x_i, y_{i,pacq})$.
- 5. Точки исходной табличной зависимости, не лежащие в границах корреляционного поля, следует отсеять и вычислить параметры модели заново, тем самым более точно рассчитать основные параметры.

- 6. Для полученной модели следует оценить качество аппроксимации с помощью критерия Стьюдента (аналогично лабораторной работе № 3):
 - 1) проверить нулевую гипотезу $H_{_{0}}: r_{_{xy}} = 0$;
 - 2) проверить нулевую гипотезу $H_0: b_0 = 0, H_0: b_1 = 0;$
- 3) если известна опытная дисперсия S_{on}^2 , полученная на этапе проведения экспериментов, то следует проверить на адекватность полученное уравнение по критерию Фишера. Для этого вычисляется опытный критерий Фишера.
 - 7. Сделать выводы по работе.

Примечание: выполнение лабораторной работы и оформление результатов аналогично примеру № 3.

Контрольные вопросы

- 1. Примеры реальных физических процессов моделируемых линейной двухпараметрической регрессией.
 - 2. Отличие регрессии от методов точной интерполяции.
- 3. На каком основании допустимо упрощение $S_{\scriptscriptstyle on}^{\scriptscriptstyle 2}=S_{\scriptscriptstyle ao}^{\scriptscriptstyle 2}$, если $S_{\scriptscriptstyle on}^{\scriptscriptstyle 2}$ неизвестно?
 - 4. Пересекаются ли границы корреляционного поля $y_{i,\min}$, $y_{i,\max}$?
 - 5. Методика отсева «выпадающих» точек.
 - 6. Критерий Фишера.
 - 7. Дисперсия опытная и дисперсия адекватности $S_{\scriptscriptstyle on}^{\scriptscriptstyle 2}, S_{\scriptscriptstyle ao}^{\scriptscriptstyle 2}$.
- 8. Каким образом учитывается погрешность экспериментальных данных при построении регрессионной модели?
- 9. Двухсторонний или односторонний критерий Стьюдента следует использовать при проверке статистических гипотез?
- 10. Результаты процедуры отсева точек, выходящих за границы корреляционного поля.

Лабораторная работа № 5 НЕЛИНЕЙНАЯ ДВУХПАРАМЕТРИЧЕСКАЯ РЕГРЕССИЯ. ЛИНЕАРИЗАЦИЯ

Цель работы: на основании экспериментальных данных, построить нелинейную двухпараметрическую регрессионную модель, используя метод линеаризации. Провести корреляционный анализ исходных данных. Проверить выполнение статистических гипотез для полученной модели.

Для выполнения работы использовать на выбор *OpenOffice Calc*, *Microsoft Excel* или символьные пакеты вычислений, такие как *Maxima* или *Wolfram Mathematica*.

Описание метода

В случае когда на основании визуальной оценки корреляционного поля и значения коэффициента корреляции можно сделать вывод о наличии зависимости нелинейного характера, следует строить нелинейную модель. Сложность выполнения данной задачи заключается в выборе уравнения регрессии правильного вида. Также, согласно методу наименьших квадратов, необходимо вывести расчетные формулы для параметров нелинейной модели.

Для решения задач подобного вида предлагается использовать метод линеаризации, фактически сводящий нелинейную задачу к линейной, которая решалась ранее. Сущность линеаризации заключается в преобразовании декартовой системы координат с целью приведения исходной нелинейной зависимости к линейному виду. Способ преобразования зависит от вида исходной нелинейной связи. Другими словами, для линеаризации необходимо осуществить x', y',переменных вследствие x, yна ДЛЯ двухпараметрической зависимости параметры $b_{\scriptscriptstyle 0}, b_{\scriptscriptstyle 1}$ преобразуются к b_0', b_1' . Если способ линеаризации выбран верно, то в новой системе координат вычисляется коэффициент корреляции, подтверждающий состоятельность выбранного метода. Все формулы для расчета параметров модели в новой системе координат совпадают со случаем линейной зависимости. Для получения нелинейной модели в исходной декартовой системе координат (x,y) необходимо осуществить обратный переход от (x',y') к (x,y) и от b'_0,b'_1 к b_0,b_1 .

Методика выполнения работы

- 1. При помощи замены переменных перейти от исходной нелинейной модели к линейной двухпараметрической и выполнить в новой системе координат пункты 1-7 лабораторной работы № 4.
- 2. Осуществить обратный переход от (x', y') к (x,y) и от b'_0, b'_1 к b_0, b_1 .

Построить модель в исходной системе координат (x,y), изобразить на графике исходную табличную зависимость (X_i, Y_i) , верхние и нижние границы $(X_i, Y_{i,\min}), (X_i, Y_{i,\max})$, а также линию регрессии $(X_i, Y_{i,\max})$.

3. Сделать выводы по работе.

Пример линеаризации

Предположим, что исходная зависимость описывается нелинейным уравнением

$$y = b_0 b_1^x. (5.1)$$

Линеаризовать предложенную зависимость можно операцией логарифмирования:

$$ln y = ln b_0 + x ln b_1 \Rightarrow$$

$$\Rightarrow y' = ln y; \quad x' = x; \quad b'_0 = ln b_0; \quad b'_1 = ln b_1 \Rightarrow$$

$$\Rightarrow y' = b'_0 + b'_1 x'.$$
(5.2)

Далее для построения регрессионной модели используется методика построения двухпараметрической линейной модели (лабораторная работа № 4), но в координатах (x', y'), и расчет ведется для коэффициентов b'_0, b'_1 . В конце расчетов для построения нели-

нейной модели в исходных координатах необходимо осуществить обратный переход.

Примечание. Выполнение лабораторной работы и оформление результатов аналогично примеру № 3.

Контрольные вопросы

- 1. Разрешима ли задача метода НК в общем виде? Можно ли в результате одной процедуры обращения к экспериментальным данным получить оптимальное уравнение регрессии и его параметры?
 - 2. Процедура выбора уравнения регрессии оптимального вида.
 - 3. Процедура линеаризации.
- 4. Графическое предоставление корреляционного поля в исходной и линеаризованной координатной системе.
 - 5. В чем заключается сложность построения нелинейных моделей?
- 6. Примеры реальных физических процессов, моделируемых нелинейной зависимостью.
 - 7. Алгоритм программы по выбору оптимальной формы уравнения регрессии.
 - 8. Всегда ли возможен обратный переход от (x', y') к (x,y)?
 - 9. Какие вы знаете виды нелинейных зависимостей?
- 10. Каким образом можно получить корректную парную зависимость, если изначально процесс зависит от большего числа входных параметров?

Лабораторная работа № 6 ЛИНЕЙНАЯ МНОГОФАКТОРНАЯ РЕГРЕССИЯ

Цель работы: на основании экспериментальных данных построить линейную многофакторную регрессионную модель. Проверить выполнение статистических гипотез для полученной модели.

Для выполнения работы использовать на выбор *OpenOffice Calc*, *Microsoft Excel* или символьные пакеты вычислений, такие как *Maxima* или *Wolfram Mathematica*.

Описание метода

Пусть физический процесс зависит от некоторого количества входных параметров, т.е.

$$y = f(x_1, x_2, ..., x_k).$$
 (6.1)

В явном виде простейшей многофакторной регрессией является линейное уравнение вида

$$y = b_0 + \sum_{j=1}^{k} b_j x_j, (6.2)$$

где b_i – коэффициенты модели.

В общем виде таблица входных параметров для построения многофакторной модели выглядит следующим образом (табл. 6.1).

Таблица 6.1 Входные параметры модели

No	X_{0}	$\mathcal{X}_{1,i}$	$\boldsymbol{\mathcal{X}}_{j,i}$	$oldsymbol{\mathcal{X}}_{k,i}$	\mathcal{Y}_{i}
1	1	$X_{1,1}$	$\boldsymbol{\mathcal{X}}_{j,1}$	$\mathcal{X}_{k,1}$	$\mathcal{Y}_{_{1}}$
i	1	$\mathcal{X}_{1,i}$	$X_{j,i}$	$\mathcal{X}_{k,i}$	\mathcal{Y}_{i}
n	1	$\mathcal{X}_{1,n}$	$X_{j,n}$	$X_{k,n}$	\mathcal{Y}_n

Согласно (6.2), табл. 6.1 можно представить в матричном виде:

$$XB = Y, (6.3)$$

откуда вектор коэффициентов B искомой модели, согласно методу наименьших квадратов, находится по формуле

$$B = (X^T X)^{-1} (X^T Y). \tag{6.4}$$

При этом дисперсия для коэффициентов $S_{b_j}^2$ находится умножением S_{on}^2 на диагональные элементы матрицы $(X^TX)^{-1}$. Как и ранее, отклонение вычисляется по формуле

$$S_{b_i} = \sqrt{S_{b_i}^2}. (6.5)$$

Далее можно проверить значимость коэффициентов $b_{_{j}}$, построив доверительные интервалы для них, то есть

$$b_{j} \pm S_{b_{i}}. \tag{6.6}$$

Если построенный таким образом интервал содержит 0, то данный коэффициент незначимо отличен от нуля и соответствующий ему фактор x_j не имеет значительного влияния на процесс. Если интервал не содержит 0, то делается альтернативный вывод. В целях корректировки модели при наличии незначимых коэффициентов из исходной таблицы значений удаляют незначимые факторы и производят перерасчет оставшихся коэффициентов.

Дисперсия адекватности модели рассчитывается по формуле

$$S_{ab}^{2} = \frac{\sum (y_{i} - y_{i pacu})^{2}}{v}, \tag{6.7}$$

где число степенней свободы $\upsilon = n - l$,

n – число экспериментальных точек,

l — количество параметров модели, т.е. количество коэффициентов $b_{\scriptscriptstyle j}.$

Проверка на адекватность проводится по критерию Фишера так же, как в случае однопараметрической и двухпараметрической линейной модели.

Методика выполнения работы

- 1. По исходным данным представить зависимость в матричном виде (6.3) и вычислить коэффициенты b_j линейной многофакторной регрессии, используя (6.4).
- 2. Рассчитать $S_{b_j}^{\, 2}, S_{b_j}^{\, 2}$, в случае, если $S_{on}^{\, 2}$ неизвестна, положить $S_{on}^{\, 2} = S_{ao}^{\, 2}$.
- 3. Построить доверительные интервалы для коэффициентов b_j по правилу (6.6). Сделать вывод о значимости коэффициентов. При наличии незначимых факторов перестроить модель без их учета.
- 4. Рассчитать S_{ao}^2 для конечной модели и сделать вывод об адекватности модели по критерию Фишера (при наличии S_{on}^2).
 - 5. Сделать выводы по работе.

Пример 4

Известно, что на механическую скорость бурения влияет осевая нагрузка на долото и расход промывочной жидкости. Смоделируем эту зависимость.

Входные данные задачи представлены на рис. 6.1.

	Механическая	Осевая	Расход
No	скорость, м/ч	нагрузка,	промывочной
		H	жидкости, л/ч
1.	3,3	4000	4200
2.	3,1	5000	3600
3.	2,4	8000	2400
4.	2,46	6000	3000
5.	1,65	7000	3600

Puc. 6.1. Таблица значений механической скорости бурения при определенной осевой нагрузке и расходе промывочной жидкости

No	$\boldsymbol{x}_{\scriptscriptstyle 0}$	\mathcal{X}_{1}	x_{2}	y
1,00	1,00	4000,00	4200,00	3,30
2,00	1,00	5000,00	3600,00	3,10
3,00	1,00	8000,00	2400,00	2,40
4,00	1,00	6000,00	3000,00	2,46
5,00	1,00	7000,00	3600,00	1,65

Рис. 6.2. Представление зависимости в матричном виде

	8,8215		14,175		3,76497
b_{i}	-0,0006	S_{b}^{2}	8,1E-08	S_{b_i}	0,00029
- 1	-0,0008	J	4,3E-07		0,00066

Рис. 6.3. Расчётные параметры: коэффициенты уравнения регрессии, их дисперсии и отклонения

На рис. 6.2 представлена зависимость в матричном виде. Результаты расчетов приведены на рис. 6.3.

Очевидно, что при построении доверительных интервалов $b_j \pm S_{b_j}$ ни один из коэффициентов не содержит 0, поэтому можно считать, что все полученные коэффициенты b_j значимо отличны от нуля, и построенная зависимость имеет вид

$$y = 8,8215 - 0,0006x_1 - 0,0008x_2,$$
 (6.8)

где y – механическая скорость бурения (м/ч),

 $x_{_{1}}$ – осевая нагрузка на долото (H),

 x_2 – расход промывочной жидкости (л/ч).

Далее вычисляется дисперсия адекватности и по критерию Фишера производится проверка на адекватность (при наличии дисперсии опытной).

Контрольные вопросы

- 1. По какой причине для построения многофакторной линейной регрессии предложено использование матричного аппарата?
- 2. Поверхность какой формы образует уравнение регрессии, полученное в этой работе?
- 3. Каким образом вычисляется число степеней свободы для дисперсии адекватности при многофакторной регрессии?
- 4. В каких случаях при вычислении дисперсий коэффициентов b_{j} вместо дисперсии воспрозводимости можно использовать дисперсию адекватности?
 - 5. Понятие «факторное пространство».
- 6. Функцию от какого количества факторов можно представить графически в трёхмерном пространстве?

ЗАКЛЮЧЕНИЕ

Методы аппроксимации, представленные в данном лабораторном практикуме полностью применимы для обобщения данных, полученных опытным путем. Статистические гипотезы позволяют аргументированно обосновать адекватность построенной модели либо дать рекомендации по методам ее улучшения. Важно отметить, что представленные методы являются лишь малой частью от существующих методик аппроксимации. Существует большое количество построения полиномиальной интерполяции, а также широкое применение получил метод интерполяции сплайнами. Значимым является тот факт, что не существует совершенной методики по выбору формы аппроксимирующей функции, и ответственность за выбор необходимой формы уравнения лежит на обработчике информации. Также важно принять во внимание, что методы аппроксимации не учитывают физической сущности процесса, и исследователю необходимо самостоятельно сопоставлять математическую модель с физической постановкой задачи.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Цивинский*, Д.Н. Разнообразие форм уравнений парной регрессии: учеб. пособие / Д.Н. Цивинский. Самара: Самар. гос. техн. ун-т, 2002. 80 с.
- 2. *Цивинский*, Д.Н. Применение метода пассивного эксперимента в нефтегазовом деле: учеб. пособие / Д.Н. Цивинский. Самара: Самар. гос. техн. ун-т, 2002. 83 с.
- 3.~ *Цивинский, Д.Н.* Применение статистического метода анализа в нефтегазовом деле: учеб. пособие / Д.Н. Цивинский. Самара: Самар. гос. техн. ун-т, 2013. 376 с.
- 4. *Губин, В.И.* Статистические методы обработки экспериментальных данных: учеб. пособие для студентов технических вузов / В.И. Губин, В.Н. Осташков. Тюмень: ТюмГНГУ, 2007. 202 с.
- 5. *Никитин В.И*. Применение методов математического моделирования для управления свойствами буровых растворов / В.И. Никитин, В.В. Живаева // Ашировские чтения: Сборник трудов Международной научно-практической конференции. Самара: Самар. гос. техн. ун-т, 2015.
- 6. Говорова А.Б. Моделирование параметров бурения скважин / А.Б. Говорова // Материалы Всероссийской научно-методической конференции. Оренбург: Издательско-полиграфический комплекс «Университет», 2014.

приложения

Приложение 1

ТАБЛИЦА ДЛЯ ОПРЕДЕЛЕНИЯ ТЕСНОТЫ ЛИНЕЙНОЙ СВЯЗИ ПО КОЭФФИЦИЕНТУ КОРРЕЛЯЦИИ

Теснота связи	Коэффициент корреляции				
	Возрастающая	Убывающая			
Линейной связи нет	[0;0.2)	(-0.2;0]			
Слабая	[0.2,0.5)	(-0.5;-0.2]			
Средняя	[0.5;0.75)	(-0.75;-0.5]			
Сильная	[0.75;0.95)	(-0.95;0.75]			
Почти функциональная	[0.95;1)	(-1;-0.95)			
Функциональная	1	-1			

Приложение 2

КРИТЕРИЙ СТЬЮДЕНТА

Число	Уровені	ь значимос	ги α (двус	торонняя і	критическая	область)
степеней						
свободы υ						
	0.10	0.05	0,02	0.01	0,002	0.001
1	6.3138	12.7062	12.7062	63.6567	318.3081	636.6189
2	2.9200	4.3027	4.3027	9.9248	22.3271	31.5991
3	2.3534	3.1824	3.1824	5.8409	10.2145	12.9240
4	2.1318	2.7764	2.7764	4.6041	7.1732	8.6103
5	2.0150	2.5706	2.5706	4.0321	5.8934	6.8688
6	1.9432	2.4469	2.4469	3.7074	5.2076	5.9588
7	1.8946	2.3646	2.3646	3.4995	4.7853	5.4079
8	1.8595	2.3060	2.3060	3.3554	4.5008	5.0413
9	1.8331	2.2622	2.2622	3.2498	4.2968	4.7809
10	1.8125	2.2281	2.2281	3.1693	4.1437	4.5869
11	1.7959	2.2010	2.2010	3.1058	4.0247	4.4370
12	1.7823	2.1788	2.1788	3.0545	3.92	4.3178
13	1.7709	2.1604	2.1604	3.0123	3.8520	4.2208
14	1,7613	2.1448	2.1448	2,9768	3.7874	4.1405
15	1.7531	2.1314	2.1314	2.9467	3.7328	4.0728
16	1.7459	2.1199	2.1199	2.9208	3.6862	4.0150
17	1.7396	2.1098	2.1098	2.8982	3.6458	3.9651
18	1.7341	2.1009	2.1009	2.8784	3.6105	3.9216
19	1.7291	2.0930	2.0930	2.8609	3.5794	3.8834
20	1.7247	2.0860	2.0860	2.8453	3.5518	3.8495
21	1.7207	2.07%	2.07%	2.8314	3,5272	3.8193
	0.05	0.025	0.01	0.005	0.0001	0.0005
	Уровень	значимс	сти α (одностор	онняя кр	итическая
	область)					
	область)					

Число	Уровень значимости α (двусторонняя критическая область)								
степеней									
свободы υ									
	0.10	0.05	0.02	0.01	0.002	0.001			
22	1.7171	2.0720	2.0720	2.0100	2.5050	2.7021			
22	1.7171	2.0739	2.0739	2.8188	3.5050	3.7921			
23	1,7139	2.0687	2.0687	2.8073	3.4850	3.7676			
24	1.7109	2.0639	2.4922	2.7969	3.4668	3.7454			
25	1.7081	2.0595	2.4851	2.7874	3.4502	3.7251			
26	1.7056	2.0555	2.4786	2.7787	3.4350	3.7066			
27	1.7033	2.0518	2.4727	2.7707	3.4210	3.68%			
28	1.7011	2.0484	2.4671	2.7633	3.4082	3.6739			
29	1.6991	2.0452	2.4620	2.7564	3.3962	3.6594			
30	1.6973	2.0423	2.4573	2.7500	3.3852	3.6460			
35	1.6896	2.0301	2.4377	2.7238	3.3400	3.5911			
40	1.6839	2.0211	2.4233	2.7045	3.3069	3.5510			
45	1.6794	2.0141	2.4121	2.6896	3.2815	3.5203			
50	1.6759	2.0086	2.4033	2.6778	3.2614	3.4960			
60	1.6706	2.0003	2.3901	2.6603	3.2317	3.4602			
70	1.6669	1.9944	1.3808	2.6479	3.2108	3.4350			
80	1.6641	1.9901	2.3739	2.6387	3.1953	3.4163			
90	1.6620	1.9867	2.3685	2.6316	3.1833	3.4019			
100	1.6602	1.9840	2.3642	2.6259	3.1737	3.3905			
120	1.6577	1.9799	2.3578	2.6174	3.1595	3.3735			
200	1.6525	1.9719	2.3451	2.6006	3.1315	3,3398			
	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905			
	0.05	0.025	0.01	0.005	0.0001	0.0005			
	Уровень	значи	мости (одностор	онняя к	ритическая			
	область)	α							

Приложение 3 $\label{eq:KPUTEPUЙ ФИШЕРА ДЛЯ УРОВНЯ ЗНАЧИМОСТИ $\alpha=0.05$}$

ν	2	l o	———— I а	l 6	l 10	15	'2 20	l 20	40	I 60	1.20	
	2	3	4	В	10	15	20	30	40	60	120	- 00
2	19,0	19,2	19,3	19,3	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,5
3	9,55	9,28	9,12	8,94	8,79	8,70	8,66	8,62	8,59	8,57	8,55	8,53
4	6,94	6,59	6,39	6,16	5,96	5,86	5,80	5,75	5,72	5,69	5,66	5,63
5	5,79	5,41	5,19	4,95	4,74	4,62	4,56	4,50	4,46	4,43	4,40	4,36
6	5,14	4,76	4,53	4,28	4,06	3,94	3,87	3,81	3,77	3,74	3,70	3,67
7	4,74	4,35	4,12	3,87	3,64	3,51	3,44	3,38	3,34	3,30	3,27	3,23
8	4,46	4,07	3,84	3,58	3,35	3,22	3,15	3,08	3,04	3,01	2,97	2,92
9	4,26	3,86	3,63	3,37	3,14	3,01	2,94	2,86	2,83	2,79	2,74	2,71
10	4,10	3,71	3,48	3,22	2,98	2,95	2,77	2,70	2,66	2,62	2,58	2,54
11	3,98	3,59	3,36	3,09	2,85	2,72	2,65	2,57	2,53	2,49	2,45	2,40
12	3,89	3,49	3,26	3,00	2,75	2,62	2,54	2,47	2,43	2,38	2,34	2,30
13	3,81	3,41	3,18	2,92	2,67	2,53	2,46	2,38	2,34	2,30	2,25	2,21
14	3,74	3,34	3,11	2,85	2,60	2,46	2,39	2,31	2,27	2,22	2,18	2,13
15	3,68	3,29	3,06	2,79	2,54	2,40	2,33	2,25	2,20	2,16	2,11	2,07
16	3,63	3,24	3,01	2,74	2,49	2,35	2,28	2,19	2,15	2,11	2,06	2,01
17	3,59	3,20	2,96	2,70	2,45	2,31	2,23	2,15	2,10	2,06	2,01	1,96
18	3,55	3,16	2,93	2,66	2,41	2,27	2,19	2,11	2,06	2,02	1,97	1,92
19	3,52	3,13	2,90	2,63	2,38	2,23	2,16	2,07	2,03	1,98	1,93	1,88
20	3,49	3,10	2,87	2,60	2,35	2,20	2,12	2,04	1,99	1,95	1,90	1,84
21	3,47	3,07	2,84	2,57	2,32	2,18	2,10	2,01	1,96	1,92	1,87	1,81
22	3,44	3,05	2,82	2,55	2,30	2,15	2,07	1,98	1,94	1,89	1,84	1,78
23	3,42	3,03	2,80	2,53	2,27	2,13	2,05	1,96	1,91	1,86	1,81	1,76
24	3,40	3,01	2,78	2,51	2,25	2,11	2,03	1,94	1,89	1,84	1,79	1,73
25	3,39	2,99	2,76	2,49	2,24	2,09	2,01	1,92	1,87	1,82	1,77	1,71
30	3,32	2,92	2,69	2,42	2,16	2,01	1,93	1,84	1,79	1,74	1,68	1,62
40	3,23	2,84	2,61	2,34	2,08	1,92	1,84	1,74	1,69	1,64	1,58	1,51
60	3,15	2,76	2,53	2,25	1,99	1,84	1,75	1,65	1,59	1,53	1,47	1,39
120	3,07	2,68	2,45	2,17	1,91	1,75	1,66	1,55	1,50	1,43	1,35	1,25
∞	3,00	2,60	2,37	2,10	1,83	1,67	1,57	1,46	1,39	1,32	1,22	1,00

Приложение 4

ФОРМЫ УРАВНЕНИЙ ПАРНОЙ РЕГРЕССИИ

парной регрессии Линеаризованная форма уравнения Замена координа y' y' $y = b_1 x$ $y = b_1 x$	ат ко	Замена эффициен уравнения b_0' b	тов
		b'_{\circ} b'_{\circ}	Я
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Х	U	P ₁
		0 1	D ₁
$y = b_0 + b_1 x y = b_0 + b_1 x y$	х	$b_{\scriptscriptstyle 0}$	\mathcal{D}_1
3 $y = b_0 + b_1/x$ $y = b_0 + b_1/x$ 1	1/x	$b_{\scriptscriptstyle 0}$	
4 $y = 1/(b_0 + b_1 x)$ $1/y = b_0 + b_1 x$ $1/y$	х	$b_{\scriptscriptstyle 0}$	
5 $y = b_0 x/(b_1 + x)$ $1/y = 1/b_0 + b_1/b_0 x$ $1/y$ 1	1/x 1	$/b_{\scriptscriptstyle 0}$ $b_{\scriptscriptstyle 1}/$	$\overline{/b_{_0}}$
6 $y = x/(b_0 + b_1 x)$ $x/y = b_0 + b_1 x$ x/y	X	$b_{\scriptscriptstyle 0}$ b	\mathcal{D}_{1}
7 $y = x/(b_0 + b_1/x)$ $x/y = b_0 + b_1/x$ x/y 1	1/x	$b_{\scriptscriptstyle 0}$	\boldsymbol{b}_1
8	x lı	$\ln b_0$ ln	$\overline{b_{_{\scriptscriptstyle 1}}}$
9 $y = b_0 + b_1 \ln x$ $y = b_0 + b_1 \ln x$ $y = b_1 \ln x$	n x	b_0	, ,
$y = y_0 + y_1 + y_2 + y_3 + y_4 + y_5 + $			1
		$ab_0 \mid b$	\mathcal{O}_1
11 $y = b_0 x / \exp(b_1 x)$ $\ln(x/y) = -\ln b_0 + b_1 \ln(x/y)$	х _	$\ln b_{\scriptscriptstyle 0}$ ℓ	\mathcal{O}_1
12 $y = x/(b_0 + b_1 \ln x)$ $x/y = b_0 + b_1 \ln x$ x/y 1	n x	$b_{\scriptscriptstyle 0}$	D ₁
13 $y = 1/(b_0 + b_1 \ln x)$ $1/y = b_0 + b_1 \ln x$ $1/y$ 1	n x	$b_{\scriptscriptstyle 0}$	\boldsymbol{p}_1
14 $y = b_0 \exp(b_1/x)$ $\ln y = \ln b_0 + b_1(1/x)$ $\ln y$ 1	1/x li	$n b_0 b_0$	
15 $y = 1/(b_0 + b_1 \exp(-x))$ $1/y = b_0 + b_1 \exp(-x)$ $1/y$	e^{-x}	$b_{\scriptscriptstyle 0}$	D ₁
16 $y = b_0 + b_1 \exp(-x)$ $y = b_0 + b_1 \exp(-x)$ y	e^{-x}	$b_{\scriptscriptstyle 0}$	
Трёхпараметрические уравнения	,	1	
17 $y = b_0 + b_1 x^h$ $y = b_0 + b_1 x^h$ y	\mathcal{X}^h	$b_{\scriptscriptstyle 0}$ b	\mathcal{D}_1
18 $y = \exp(b_0 + (b_1/x + h))$ $\ln y = b_0 + b_1(1/(x + h))$ $\ln y$	$(x+h)^{-1}$	$b_{\scriptscriptstyle 0}$	D ₁

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНЫМ РАБОТАМ № 1 И 2

Вариант 00

В научной лаборатории были получены образцы цементного камня различного времени выдержки. Образцы испытаны на прочность. Результаты испытаний представлены в виде парной зависимости $\sigma = f(t)$, сутки.

t, сутки	0.01	2.0	7	14	28	40	60
σ, МПа	0.01	5.4	6.4	7.6	7.7	8.3	8.4

Вариант 01

В научной лаборатории была исследована зависимость растворимости безводного KCl в воде от температуры в г/100 г раствора. Результаты исследований представлены в таблице в виде парной зависимости c = f(t).

	0.001					
с, г/100 г	21.9	23.8	25.5	27.1	28.6	30

Вариант 02

В научной лаборатории, была исследована зависимость удельной плотности буферной жидкости от количество утяжелителя (барита) G, добавляемого в глинистый раствор. Результаты исследований представлены в виде парной зависимости $\rho = (G)$.

G,кг/т							
ρ , $\kappa\Gamma/M^3$	1050	1100	1190	1300	1390	1500	1600

Вариант 03

В научной лаборатории была исследована зависимость статического напряжения сдвига бурового раствора от времени. Результаты испытаний представлены в виде парной зависимости $\tau_0 = f(t)$.

,							4.0
$\tau_0 \text{ MG/CM}^2$	26.6	36.5	40.0	51.0	50	56.0	60.0

В научной лаборатории была исследована зависимость растворимости безводного KCl в воде от температуры в г/100 г раствора. Результаты исследований представлены в таблице в виде парной зависимости c = f(t).

t, °C	50	60	70	80	90	100
с, г/100 г	30	31.4	33.4	33.9	37.2	36

Вариант 05

В научной лаборатории была исследована зависимость удельной плотности буферной жидкости от количество утяжелителя (барита) G, добавляемого в глинистый раствор. Результаты исследований представлены в виде парной зависимости $\rho = (G)$.

G, кг/т							
ρ, κΓ/M ³	1390	1500	1600	1750	1900	1910	2000

Вариант 06

В научной лаборатории была исследована зависимость статического напряжения сдвига бурового раствора от времени. Результаты испытаний представлены в виде парной зависимости $\tau_0 = f(t)$.

_						10	
$\tau_0 \text{ MI/cm}^2$	50	56.0	60.0	67.0	73.0	79.0	83

Вариант 07

Из рецепта щелочного силикатного геля представлена зависимость срока схватывания от концентрации активатора $(NH_4)_2 CO_3$.

$(NH_4)_2 CO_3$	1,03	0,87	0,74	0,65	0,63	0,58	0,52
t, Y.	1	2	3	4	5	10	15

Вариант 08

Результаты исследования влияния Na_2CO_3 на вязкость при низких скоростях сдвига бурового раствора из 15 % талалаевского глинопорошка.

$Na_{2}CO_{3}$,%	0	1,5	3	4,5	5	6
ВНСС, сПз	729,1	1589,6	1929,6	2379,4	2683,5	3598,7

Результаты исследования влияния Na_2CO_3 на вязкость при низких скоростях сдвига бурового раствора из 20 % талалаевского глинопорошка.

$Na_{2}CO_{3}$,%	0	1,5	3	4,5	5	6
ВНСС, сПз	3119,6	3889,9	4349,1	4709,5	4980,3	5408,2

Вариант 10

Результаты исследования влияния Na_2CO_3 на условную вязкость бурового раствора из 10 % воскресенского глинопорошка.

$Na_{2}CO_{3}$,%	0	1,5	3	4,5	6
УВ, с.	14	21	28	24	23

Вариант 11

Результаты исследования влияния Na_2CO_3 на вязкость при низких скоростях сдвига бурового раствора из $10\,\%$ воскресенского глинопорошка.

Na_2CO_3 ,%	0	1,5	3	4,5	6
ВНСС, сПз	3999	30993	56688	61787	100000

Вариант 12

Представлена зависимость времени сшивания вязкоупругого состава при концентрации $\Pi AA 0,4 \%$ от $ClCr_3$.

ClCr ₃ , части	10	20	30	40	50	60
t, Y.	16,8	8,0	3,0	0,7	0,1	0,001

Вариант 13

Представлена зависимость времени сшивания вязкоупругого состава при концентрации $\Pi AA 0,3 \%$ от $ClCr_3$.

ClCr ₃ , части	10	20	30	40	50	60
t, Y.	57,4	36,6	21,7	11,4	4,8	0,8

Представлена зависимость времени сшивания вязкоупругого состава при концентрации ПАА 0.2% от $ClCr_3$.

$ClCr_{_3}$, части	10	20	30	40	50	60	70	80	90
t, 4.	104,4	71,7	46,8	28,6	16,0	8,0	3,5	1,4	0,7

Вариант 15

Представлена зависимость времени сшивания вязкоупругого состава при концентрации ПАА 0.2~% от $ClCr_3$.

$ClCr_{_3}$, части	60	70	80	90	100
t, 4.	8,0	3,5	1,4	0,7	0,3

Вариант 16

Представлена зависимость времени сшивания вязкоупругого состава при концентрации $\Pi AA 0,1 \%$ от $ClCr_3$.

ClCr ₃ ,части	10	20	30	40	50	60
t, Y.	157,8	113,2	78,3	52,1	33,6	21,6

Вариант 17

Представлена зависимость времени сшивания вязкоупругого состава при концентрации ПАА 0,1 % от $ClCr_{_3}$.

$ClCr_{_3}$,части					100
t, Y.	21,6	15,1	13,1	14,4	17,9

Вариант 18

Представлена зависимость ширины раскрытия трещины w, м от размера частиц кольматанта, мкм.

h, mkm	570	530	370	650	850
W, M	0,57	0,53	0,37	0,65	0,85

Вариант 19

Зависимость плотности воды от температуры.

T, °C	0	12	20	28	33	40	45
ρ, κΓ/M ³	999,8	999,5	998,2	996,2	994,7	992,2	990,2

Зависимость плотности воды от температуры.

T, °C	45	50	60	70	80	90
ρ, κΓ/M ³	990,2	988,0	983,2	977,8	971,8	965,3

Вариант 21

Зависимость плотности воды от температуры.

T, °C	8	15	22	27	33	38
ρ, κΓ/M ³	999,8	999,1	997,8	996,5	994,7	993,0

Вариант 22

Зависимость плотности воды от температуры.

<i>T</i> , ° <i>C</i>	40	45	50	60	66	70	78	80
ρ, κΓ/M ³	992,2	990,2	988,0	983,2	980,0	977,8	973,0	971,8

Вариант 23

Зависимость динамической вязкости воды от температуры.

<i>T</i> , ° <i>C</i>	0	10	20	30	40	50	60
$\mu \cdot 10^3$, Πa	·c 1,793	1,308	1,0026	0,7977	0,6532	0,5471	0,4668

Вариант 24

Зависимость динамической вязкости воды от температуры.

T, °C	70	76	80	86	90	98
$\mu \cdot 10^3$, $\Pi a \cdot c$	0,4045	0,3735	0,3550	0,3300	0,3150	0,2883

Вариант 25

Зависимость динамической вязкости воды от температуры.

T, °C	15	20	25	30	35	40	45
$\mu \cdot 10^3$, $\Pi a \cdot c$	1,1391	1,0026	0,8907	0,7977	0,7196	0,6532	0,5963

Вариант 26

Зависимость динамической вязкости воды от температуры.

<i>T</i> , ° <i>C</i>	45	50	54	60	66	70
$\mu \cdot 10^3$, $\Pi a \cdot c$	0,5963	0,5471	0,5124	0,4668	0,4276	0,4045

Зависимость кинематической вязкости воды от температуры.

T, °C	4	10	14	18	20	24
$\upsilon \cdot 10^6$, m^2/c	1,569	1,308	1,171	1,0554	1,0045	0,9139

Вариант 28

Зависимость кинематической вязкости воды от температуры.

T, °C	24	27	30	32	34
$\upsilon \cdot 10^6$, m^2/c	0,9139	0,8545	0,8012	0,7687	0,7383

Вариант 29

Зависимость кинематической вязкости воды от температуры.

T, °C	34	37	40	43	45	48
$\upsilon \cdot 10^6$, m^2/c	0,7383	0,6964	0,6583	0,6236	0,6022	0,5723

Вариант 30

Зависимость кинематической вязкости воды от температуры.

7	Γ, ° <i>C</i>	48	50	54	58	60	62	64
ι	$0.10^6, \text{m}^2/\text{c}$	0,5723	0,5537	0,5196	0,4890	0,4748	0,4613	0,4485

Вариант 31

Зависимость кинематической вязкости воды от температуры.

T, °C	64	66	68	72	76	78	80
$\upsilon \cdot 10^6$, m^2/c	0,4485	0,4363	0,4247	0,4031	0,3833	0,3741	0,3653

Вариант 32

Зависимость кинематической вязкости воды от температуры.

T, °C	82	86	88	90	96	98
$\upsilon \cdot 10^6$, m^2/c	0,3568	0,3410	0,3335	0,3264	0,3065	0,3004

Вариант 33

Зависимость поверхностного натяжения воды от температуры.

<i>T</i> , ° <i>C</i>	0	2	4	6	8	10
$\sigma \cdot 10^3$, Дж/м 2	75,64	75,36	75,08	74,79	74,51	74,23

Зависимость поверхностного натяжения воды от температуры.

<i>T</i> , ° <i>C</i>	10	12	14	16	18	20
σ·10³, Дж/м²	74,23	73,94	73,64	73,35	73,05	72,75

Вариант 35

Зависимость поверхностного натяжения воды от температуры.

T, °C	20	22	24	26	28	30
σ·10³, Дж/м²	72,75	72,44	72,13	71,83	71,51	71,20

Вариант 36

Зависимость поверхностного натяжения воды от температуры.

T, °C	30	32	36	38	40	42
σ·10³, Дж/м²	71,20	70,89	70,25	69,93	69,60	69,27

Вариант 37

Зависимость поверхностного натяжения воды от температуры.

T, °C	42	43	44	45	46	47	48
σ·10³, Дж/м²	69,27	69,11	68,95	68,78	68,6	68,45	68,28

Вариант 38

Зависимость содержания сероводорода от рН.

pН	7	7,5	8	9	10	11	12
Процентное	50	25	10	1	0,1	0,01	0,001
содержание S 2-							
в виде H_2S							

Вариант 39

Зависимость поверхностного натяжения воды от температуры.

T, °C	49	50	52	54	56	58	60
σ·10³, Дж/м²	68,12	67,94	67,61	67,27	66,93	66,59	66,24

Зависимость поверхностного натяжения воды от температуры.

T, °C	0_	0.		68	70
σ·10³, Дж/м²	65,89	65,54	65,18	64,83	64,47

Вариант 41

Зависимость поверхностного натяжения воды от температуры.

T, °C	72	74	76	78	80
$\sigma \cdot 10^3$, Дж/м ²	64,12	63,76	63,40	63,04	62,67

Вариант 42

Зависимость поверхностного натяжения воды от температуры.

T, °C	72	74	76	78	80
σ·10³, Дж/м²	64,12	63,76	63,40	63,04	62,67

Вариант 43

Зависимость поверхностного натяжения воды от температуры.

T, °C	82	84	86		88	90	92
$\sigma \cdot 10^3$, Дж/м 2	62,30	61,93	61	56	61,19	60,82	60,44

Вариант 44

Зависимость поверхностного натяжения воды от температуры.

T, °C	90	92	94	96	98
σ·10³, Дж/м²	60,82	60,44	60,06	59,68	59,29

Вариант 45

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	0	2	4	6	8
$\beta \cdot 10^4$, K^{-1}	-0,683	-0,328	0,003	0,313	0,605

Вариант 46

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	8	10	11	12
$\beta \cdot 10^4$, K^{-1}	0,605	0,880	1,012	1,141

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	12	15	17	20
$\beta \cdot 10^4$, K^{-1}	1,141	1,509	1,740	2,068

Вариант 48

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	20	22	24	26	28
$\beta \cdot 10^4$, K^{-1}	2,068	2,275	2,475	2,667	2,853

Вариант 49

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	28	30	32	34	36	38
$\beta \cdot 10^4$, K^{-1}	2,853	3,033	3,206	3,37	3,539	3,698

Вариант 50

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	38	40	42	44	46	48	50
$eta\!\cdot\!10^{\scriptscriptstyle 4}$, $K^{\scriptscriptstyle -1}$	3,698	3,853	4,004	4,151	4,295	4,437	4,575

Вариант 51

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	50	52	54	56	58	60	62
$\beta \cdot 10^4$, K^{-1}	4,575	4,71	4,844	4,974	5,103	5,23	5,355

Вариант 52

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	62	64	66	68	70	72
$\beta \cdot 10^4$, K^{-1}	5,355	5,478	5,599	5,719	5,838	5,955

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	72	74	76	78	80	82
$\beta \cdot 10^4$, K^{-1}	5,955	6,071	6,185	6,299	6,411	6,523

Вариант 54

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	82	84	86	88	90
$\beta \cdot 10^4$, K^{-1}	6,523	6,634	6,744	6,853	6,962

Вариант 55

Зависимость коэффициента теплового расширения воды от температуры.

T, °C	92	94	96	98	100
$\beta \cdot 10^4$, K^{-1}	7,070	7,178	7,286	7,393	7,500

Вариант 56

Зависимость удельной теплоёмкости воды от температуры.

T, °C	0	2	4	6	8
$C_{\scriptscriptstyle p}$, Дж/(кг · К)	4217,6	4210,7	4204,8	4199,9	4195,6

Вариант 57

Зависимость удельной теплоёмкости воды от температуры.

T, °C	8	10	12	14	16	18
$C_{_{p}}$, Дж/(кг \cdot К)	4195,6	4192,1	4189,2	4186,7	4184,7	4183,0

Вариант 58

Зависимость удельной теплоёмкости воды от температуры.

T, °C	18	20	22	24	26	28
$C_{_{p}}$, Дж/(кг \cdot К)	4183	4181,7	4180,7	4179,8	4179,2	4178,8

Зависимость удельной теплоёмкости воды от температуры.

T, °C	28	30	32	34	36	38
$C_{_p}$, Дж/(кг \cdot К)	4178,8	4178,5	4178,3	4178,2	4178,3	4178,4

Вариант 60

Зависимость удельной теплоёмкости воды от температуры.

T, °C	40	42	44	46	48	50
$C_{_{p}}$, Дж/(кг \cdot К)	4178,6	4178,9	4179,2	4179,7	4180,1	4180,7

Вариант 61

Зависимость удельной теплоёмкости воды от температуры.

T, °C	52	54	56	58	60	62
$C_{_{p}}$, Дж/(кг \cdot К)	4181,3	4182,0	4182,7	4183,5	4184,4	4185,3

Вариант 62

Зависимость удельной теплоёмкости воды от температуры.

T, °C	64	66	68	70	72	74
$C_{_p}$, Дж/(кг \cdot К)	4186,3	4187,4	4188,5	4189,7	4190,9	4192,2

Вариант 63

Зависимость удельной теплоёмкости воды от температуры.

T, °C	74	76	78	80	82	84
$C_{_p}$, Дж/(кг \cdot К)	4192,2	4193,6	4195,0	4196,5	4198,1	4199,7

Вариант 64

Зависимость удельной теплоёмкости воды от температуры.

<i>T</i> , ° <i>C</i>	84	86	88		92
$C_{_p}$, Дж/(кг \cdot К)	4199,7	4201,4	4203,2	4205,0	4207,0

Вариант 65

Зависимость удельной теплоёмкости воды от температуры.

<i>T</i> , ° <i>C</i>	92	94	96	98	100
$C_{_p}$, Дж/(кг \cdot К)	4207,0	4209,1	4211,4	4213,8	4216,4

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	0	2	4	6	8
λ , BT/(M·K)	0,5665	0,5701	0,5735	0,5767	0,5798

Вариант 67

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	8	10	12	14	16	18
λ , BT/(M·K)	0,5798	0,5828	0,5859	0,5891	0,5922	0,5953

Вариант 68

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	18	20	22	24	26	28
λ , BT/(M·K)	0,5953	0,5983	0,6014	0,6044	0,6074	0,6104

Вариант 69

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	28	30	32	34	36	38	40
λ , BT/(M·K)	0,6104	0,6133	0,6162	0,619	0,6218	0,6246	0,6273

Вариант 70

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	40	42	44	46	48	50	52
λ , BT/(M·K)	0,6273	0,6299	0,6325	0,6351	0,6375	0,64	0,6423

Вариант 71

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	54	56	58	60	62	64	66
λ , BT/(M·K)	0,6446	0,6469	0,649	0,6511	0,6532	0,6552	0,6571

Вариант 72

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	66	68	70	72	74	76
λ , BT/(M·K)	0,6571	0,6589	0,6607	0,6625	0,6641	0,6657

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	76	78	80	82	84	86
λ , BT/(M·K)	0,6657	0,6672	0,6689	0,6704	0,6718	0,6730

Вариант 74

Зависимость коэффициента теплопроводности воды от температуры.

<i>T</i> , ° <i>C</i>	86	88	90	92	94
λ , BT/(M·K)	0,6730	0,6741	0,6751	0,6760	0,6768

Вариант 75

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	86	88	90	92	94
λ , BT/(M·K)	0,6730	0,6741	0,6751	0,6760	0,6768

Вариант 76

Зависимость коэффициента теплопроводности воды от температуры.

T, °C	90	92	94	96	98	100
λ , BT/(M·K)	0,6751	0,6760	0,6768	0,6775	0,6782	0,6788

Вариант 77

Зависимость прочности цемента от времени застывания при температуре в 1 °C.

<i>t</i> , сутки	1	2	3	7	14	21	28
Прочность, %	1	3	5	15	31	42	52

Вариант 78

Зависимость прочности цемента от времени застывания при температуре в 5 °C.

<i>t</i> , сутки	1	2	3	7	14	21	28
Прочность, %	4	8	11	25	45	58	68

Вариант 79

Зависимость прочности цемента от времени застывания при температуре в $10\,^{\circ}\mathrm{C}$.

<i>t</i> , сутки	1	2	3	7	14	21	28
Прочность, %	6	12	18	37	60	74	83

Зависимость прочности цемента от времени застывания при температуре в $20\,^{\circ}\mathrm{C}$.

<i>t</i> , сутки	1	2	3	7	14	21	28
Прочность, %	13	23	33	55	80	92	100

Вариант 81

Зависимость прочности цемента от времени застывания при температуре в 30 °C.

<i>t</i> , сутки	1	2	3	7	14	21
Прочность, %	23	38	49	72	92	100

Вариант 82

Зависимость прочности цемента от времени застывания при температуре в 40 °C.

t, сутки	1	2	3	7	14	21
Прочность, %	32	54	66	87	100	100

Вариант 83

Зависимость прочности цемента от времени застывания при температуре в 50 °C.

<i>t</i> , сутки	1	2	3	7	14
Прочность, %	43	76	85	100	100

Вариант 84

Результаты расчета изменения температуры нефти и ее вязкости при изменении температуры закачиваемой воды.

воды,			120		160	180	200
$T_{{}_{\scriptscriptstyle{He}\phi mu}},{}^{\scriptscriptstyle{o}}C$	44.51	55.07	65.71	76.35	86.99	97.62	108.26

Вариант 85

Результаты расчета изменения температуры нефти и ее вязкости при изменении температуры закачиваемой воды.

$T_{\scriptscriptstyle 60\partial bl}$, ${}^{\circ}C$		220	240		280	300
$T_{{}_{\scriptscriptstyle{He\phi mu}}},{}^{\scriptscriptstyle{o}}C$	108.26	118.90	129.53	140.17	150.81	161.45

Зависимость скорости движения бурового раствора в кольцевом пространстве скважины от скорости движения колонны труб при проведении СПО.

<i>ν_{δκ}</i> , м/с	0	2,631	4,26	4,32	6	6,5
$V_{\delta p}$, M/C	0	2,046	3,13	3,359	4,666	5,02

Вариант 87

Зависимость давления на забое от скорости спуска бурильных труб при проведении СПО.

$V_{\delta\kappa}$, M/C	0	2,631	4,26	4,32	6	6,5
<i>P</i> , МПа	39,701	41,727	47,387	54,475	66,518	70,21

Вариант 88

Представлена таблица, соответствующая скорости бурильной колонны за различные временные промежутки при проведении СПО.

t, c	0	2,2	3,6	5	6,25
$V_{\delta\kappa}$, M/C	0	2,631	4,32	6	6

Вариант 89

Представлена таблица, соответствующая скорости бурильной колонны за различные временные промежутки при проведении СПО.

<i>t</i> , c	6,25	7,7	9,058	10	11	12,5
$V_{\delta\kappa}$, M/C	6	4,26	2,631	1,56	0,8	0

Вариант 90

Представлена таблица, соответствующая скорости бурильной колонны за различные временные промежутки при проведении СПО.

<i>t</i> , c	0	3	5	7	9	11
$v_{\delta\kappa}$, M/c	0	1	3	5	8	7

Вариант 91

Представлена таблица, соответствующая скорости бурильной колонны за различные временные промежутки при проведении СПО.

t, c	0	2,5	4	7,5	9
$V_{\delta\kappa}$, M/C	0	3	6	6	4

Зависимость скорости движения бурового раствора в кольцевом пространстве скважины от скорости движения колонны труб при проведении СПО.

$V_{\delta\kappa}$, M/C	0,5	1	1,5	1,75	2
$V_{\delta p}$, M/C	0,1	0,45	0,8	1,25	1,4

Вариант 93

Плотность воздуха в зависимости от температуры.

<i>T</i> , ° <i>C</i>							
ρ, κΓ/M ³	1,584	1,549	1,515	1,484	1,453	1,424	1,395

Вариант 94

Плотность воздуха в зависимости от температуры.

<i>T</i> , ° <i>C</i>	-15	-10	-5	0	10	15
ρ, κΓ/M ³	1,369	1,342	1,318	1,293	1,247	1,226

Вариант 95

Плотность воздуха в зависимости от температуры.

<i>T</i> , ° <i>C</i>	20	30	40	50	60
ρ, κΓ/M ³	1,205	1,165	1,128	1,093	1,06

Вариант 96

Плотность воздуха в зависимости от температуры.

T, °C	40	50	60	70	80	90
ρ, κΓ/M ³	1,128	1,093	1,06	1,029	1	0,972

Вариант 97

Плотность воздуха в зависимости от температуры.

T, °C	80	90	100	110	120	130	140
ρ, κΓ/M ³	1	0,972	0,946	0,922	0,898	0,876	0,854

Плотность воздуха в зависимости от температуры.

<i>T</i> , ° <i>C</i>	120	130	140	150	160	170	180
ρ , $\kappa\Gamma/M^3$	0,898	0,876	0,854	0,835	0,815	0,797	0,779

Вариант 99

Плотность воздуха в зависимости от температуры.

<i>T</i> , ° <i>C</i>	180	190	200	250	300	350	400	450
ρ, κΓ/M ³	0,779	0,763	0,746	0,674	0,615	0,566	0,524	0,49

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 3

Представлены зависимости гидравлических параметров в безразмерном виде, где x – входной параметр процесса, y – выходной.

Вариант 00													
x		0),5 1,5		2,5			3,5		4,5			
у		1	,5	1		3	3,5		5		6,5		
Вариант 01										•			
X		0,5		1,5	2.	,5	3	3,5	,	4,5	5,5		
У		3		2	7	7]	10		13		16	
]	Вариа	ант О2	2						
X		1	2		3	4	-	5		6		7	
у		5	4		11	12	2	15,2	,	18	}	21	
					Вариа	нт 03	3						
X	(0,5	1		1,5	3	3	4,5	5,5				
у		1	4,2		9	12,1		18,6		23,5			
]	Вариа	нт 04	4						
X		3	12	12		21		30		42		48	
У	-	1,5	11		5	11	,3	15	15			25	
_]	Вариа	нт 03	5						
X		2	3		4	5		7		9		10	
У		1	1,7	1	,33	3,	7	3,6		4,7		5,25	
_]	Вариа	нт 0	6					_	
X		4	8		10	14	4	18		22	,		
у		4	3		7	10		13		16			
	Вариант 07												
X		1	4	7		10	0	13		16)		
У		2	6	27		3	8	50		60)		
					Вариа	нт 08	3						
X		2	5		8	11		14		17	_	20	
У		2	12		14	20)	25		30		35	

Вариант 09											
X	1	3	5	7	9	11	12				
у	14	25	25	59	75	91	99				
Вариант 10											
X	2	4	6	8	10	12					
у	30	34	40	67	84	99					
	Вариант 11										
X	1	3	5	7	9	11	13				
У	3	33	40	55	72	86	99				
			Вариа	ант 12							
X	2	5	8	11	14	20					
У	11	46	45	60	80	111					
			Вариа	ант 13							
x	2	4	6	8	10	12					
У	18	31	62	70	88	104					
			Вариа	ант 14							
X	2	4	6	8	10	12					
У	18	31	62	70	88	104					
			Вариа	ант 15							
X	4	6	8	10	12	14	16				
У	12	12	16	18	24	29	33				
			Вариа	ант 16							
X	3	6	9	12	15	18	21				
у	4	32	34	52	57	68	83				
	Вариант 17										
X	0,5	1	1,5	2	2,5	3	3,5				
У	2	12	23	25	30	38	42				
			Вариа	ант 18							
X	4	6	8	10	12	14	16				
у	6	19	19	25	30	34	38				

Вариант 19											
X	4	5	6	7	8	9	10				
у	22	40	41	50	55	64	69				
Вариант 20											
X	6	7	8	9	10	11	12				
у	39	66	64	74	79	90	96				
_	Вариант 21										
X	1	3	5	7	9	11	13				
у	1	19	20	29	35	44	51				
			Вариа	ант 22							
X	2	4	6	8	10	12	14				
y	1	7	7	9	11	14	16				
			Вариа	ант 23							
X	4	6	8	10	12	14	16				
у	4	39	45	61	70	80	96				
			Вариа	ант 24							
X	1	4	7	10	13	16	19				
y	9	6	21	32	38	50	57				
			Вариа	ант 25							
X	2	5	8	11	14	17	20				
y	3	35	30	45	53	68	75				
			Вариа	ант 26							
X	3	6	9	12	15	18	21				
y	3	35	34	48	56	73	78				
	Вариант 27										
x	1	2	3	4	5	6	7				
у	5	30	32	46	54	65	77				
			Вариа	ант 28							
X	2	3	4	5	6	7	8				
у	9	42	47	57	70	80	90				

Вариант 29										
X	3	4	5		6	7	8	9		
У	10	49	55	(69	80	90	99		
Вариант 30										
X	4	5	6	6 7		8	9	10		
у	2	31	22		28	30	35	38		
			Ba	риант	31					
X	1	3	5		7	9	11	13		
у	9	8	20		27	36	43	52		
			Ba	риант	32					
X	2	4	6		8	10	12	14		
У	2	10	9		15	18	22	25		
	Вариант 33									
X	1	2	3	4	5	(5 7	8		
у	2	39	40	51	63	3 7	7 90	99		
1			Ba	риант	34					
X	1	3	5		7	9	11			
у	3	2	7		10	13	16			
			Ba	риант	35					
X	2	4	6		8	10	12	14		
У	5	4	11	1	1,7	15,2	18	21		
			Ba	риант	36					
X	1	2	3		6	9	11			
у	10	42	90	1	.22	185	235			
	Вариант 37									
X	1	4	5		7	10	14	16		
У	1,5	11	5		11	15	20	25		
			Ba	риант	38					
1								1.0		
\mathcal{X}	2 3	3	4		5	7	9	10		

Вариант 39											
X	2	4	5	7	9		11	13			
у	4	3	7	10	13	}	16	19			
Вариант 40											
X	1	4	7		10	13		16			
у	2	6	27	,	38	50		60			
			Ba	риант	41						
X	2	5	8		11	14		17	20		
у	2	12	14	,	20	25		30	35		
			Ba	риант	42						
X	1	3	5		7	9		11	12		
у	14	25	25		59	75		91	99		
			Ba	риант	43						
X	2	4	6		8	10		12			
y	30	34	40	(57	84		99			
			Ba	риант	44						
X	1	3	5		7	9		11	13		
у	3	33	40		55	72		85	99		
			Ba	риант	45						
X	2	5	8		11	14		20			
у	11	46	45		50	80		111			
			Ba	риант	46						
X	2	4	6		8	10		12			
у	18	31	62		70	88		104			
	Вариант 47										
X	3	5	7		9	11		13			
у	36	39	60	,	76	94		110			
			Ba	риант	48						
X	4	6	8		10	12		14	16		
y	12	12	16		18	24		29	33		

Вариант 49												
X	3	6	9	12	15	18	21					
у	4	32	34	52	57	68	83					
			Вариа	ант 50								
X	1	2	3	4	5	6	7					
У	2	12	23	25	30	38	42					
			Вариа	ант 51								
X	2	3	4	5	6	7	8					
У	6	19	19	25	30	34	38					
			Вариа	ант 52								
X	4	5	6	7	8	9	10					
У	22	40	51	50	55	64	69					
			Вариа	ант 53								
X	6	7	8	9	10	11	12					
У	39	66	64	74	79	90	96					
			Вариа	ант 54								
X	1	3	5	7	9	11	13					
У	1	19	20	29	35	44	51					
			Вариа	ант 55								
X	2	4	6	8	10	12	14					
У	1	7	7	9	11	14	16					
_			Вариа	ант 56			_					
X	4	6	8	10	12	14	16					
У	4	39	45	61	70	80	96					
			Вариа	ант 57								
X	1	4	7	10	13	16	19					
у	9	6	21	32	38	50	57					
			Вариа	ант 58								
X	2	5	8	11	14	17	20					
У	3	35	30	45	53	68	75					
			Вариа	ант 59								
	_		0	10	1.5	18	21					
\mathcal{X}	3	6	9	12	15	10	<u> </u>					

Вариант 60														
X	1	2	3		4	4		5	6		7			
у	5	30	32	•	4	6	•	54	65		77			
			Ba	риа	нт б	51								
X	2	3	4			5		6	7		8			
у	9	42	47	'	5	57	,	70	80		90			
			Ba	риа	нт 6	52								
X	3	4	5			6		7	8		9			
У	10	49	55	,	6	59		80	90		99			
			Ba	риа	нт (63								
X	4	5	6		,	7		8	9		10			
у	2	31	22	,	2	28		30	35		38			
			Ba	риа	нт (54								
Вариант 64 x 1 3 5 7 9 11 13														
У	9	8	20)	2	27	,	36	43		52			
			Ba	риа	нт (55								
X	2	4	6		;	8		10	12		14			
у	2	10	9		1	5		18	22		25			
			Ba	риа	нт б	66								
X	1	2	3	2	4	5		6		7	8			
У	2	39	40	5	1	63	3	77	9	0	99			
	T	1	1	риа	нт (1							
X	1	3	5			7		9	11					
У	3	2	7			0		13	16					
		1 .		риа	нт (1	10						
X	2	4	6			8		10	12		13			
У	5	4	11			2		16	18		22			
			Ba 3	риа	нт 6		1	0						
X	1	2			6	_	9	11						
У	20	84	180)	2	44	3	570	470)				

Вариант 70												
X	1	4	5	7	10	14	16					
у	1,5	11	5	11	15	20	25					
			Вариа	ант 71								
X	2	3	4	5	7	9	10					
У	3	5	4	11	11	14	16					
			Вариа	ант 72								
X	2	4	5	7	9	11	13					
y	4	3	7	10	13	16	19					
			Вариа	ант 73								
X	1	4	7	10	13	16						
y	2	6	27	38	50	60						
			Вариа	ант 74								
X	2	5	8	11	14	17	20					
y	2	12	14	20	25	30	35					
			Вариа	ант 75								
X	1	3	5	7	9	11	12					
у	14	25	25	59	75	91	99					
			Вариа	ант 76								
X	2	3	4	5	6	7	8					
y	9	42	47	57	70	80	90					
			Вариа	ант 77	_							
X	1	3	5	7	9	11	13					
y	3	33	40	55	72	85	99					
			Вариа	ант 78								
X	2	5	8	11	14	20						
у	11	46	45	60	80	111						
			Вариа	ант 79			_					
X	2	4	6	8	10	12						
у	18	31	62	70	88	104						

			Вариа	ант 80			
x	3	5	7	9	11	13	
у	36	39	60	76	94	110	
			Вариа	нт 81			
x	4	6	8	10	12	14	16
У	12	12	16	18	24	29	33
			Вариа	нт 82			
X	3	6	9	12	15	18	21
у	4	32	34	52	57	68	83
			Вариа	ант 83			
X	1	2	3	4	5	6	7
у	2	12	23	25	30	38	42
			Вариа	ант 84			
X	2	3	4	5	6	7	8
у	6	19	19	25	30	34	38
			Вариа	ант 85			
X	4	5	6	7	8	9	10
у	22	40	41	50	55	64	69
			Вариа	ант 86			
X	6	7	8	9	10	11	12
y	39	66	64	74	79	90	96
				ант 87			
X	1	3	5	7	9	11	13
у	1	19	20	29	35	44	51
			Вариа	ант 88			
X	2	4	6	8	10	12	14
у	1	7	7	9	11	14	16
			Вариа	ант 89			
X	4	6	8	10	12	14	16
y	4	39	45	61	70	80	96

			Ba	риан	т 90				
X	1	4	7		10	-	13	16	19
у	9	6	21		32	3	38	50	57
			Ba	риан	т 91				
X	2	5	8		11	-	14	17	20
у	3	35	30		45	4	53	68	75
			Ba	риан	т 92				
X	3	6	9		12	-	15	18	21
у	3	35	34		48	4	56	73	78
			Ba	риан	т 93				
x	1	2	3	4	5	5	6	7	8
у	2	39	40	51	6	3	77	90	99
			Ba	риан	т 94				
X	2	4	6		8	-	10	12	
у	30	34	40		67	8	34	99	
			Ba	риан	т 95				
X	3	4	5		6		7	8	9
У	10	49	55		69	8	30	90	99
			Ba	риан	т 96	ı			
X	4	5	6		7		8	9	10
У	2	31	22		28	(30	35	38
			Ba	риан	т 97	ı	,		
X	1	3	5		7		9	11	13
У	9	8	20		27		36	43	52
			Ba	риан	т 98	ı			
X	2	4	6		8	-	10	12	14
У	2	10	9		15	-	18	22	25
			Ba	риан	т 99	ı			
X	1	2	3		4		5	6	7
у	5	30	32		46	4	54	65	77

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 4

В каждом варианте задана эмпирическая зависимость измеряемого параметра y при различных значениях входного параметра x. Также указано количество параллельных экспериментов, проведенных для установления зависимости, и имеется информация о дисперсии воспроизводимости, вычисленной при первичной обработке данных.

Вариант 00														
X	2		4	6		8	10)	12	14				
у	6		7	9	1	1	16	5	14	15				
			N.	$o_{\Pi}=7$, Ω	$S_{on}^2 =$	0,033	33							
	Вариант 01													
X	1		3	5		7	9		11					
y	23	4	52	80		80	13	6	162					
			Ι	$V_{on} = 5$,	S_{on}^2	= 0,14	1							
Вариант 02														
x 2 4 6 7 8 10 12 y 35 62 91 117 118 146 177														
y 35 62 91 117 118 146 177														
	$N_{on} = 9, S_{on}^2 = 0.777$													
	Вариант 03													
X	1	2	3	4		5	6	7	8	9				
у	23	35	52	71	79	,5	91	95	119,	5 136				
			N	$V_{on}=8$,	$S_{on}^2 =$	0,89	95							
				Вари	ант ()4								
X	1	2	•	3	4	4	5	6	8	10				
у	23	24,5	5 5	52	52		30	108	122	146				
$N_{on} = 5$, $S_{on}^2 = 0.56$														
Вариант 05														
X	x 2 3 4 5 6 7 8 9 10													
у														
	$N_{on} = 7$, $S_{on}^2 = 1.53$													

Вариант 06														
X	3	4	4	5		6	7	7	8	9		10	11	
y	52	6	57	78		92	10)8	138	136	5	147	162	
		•	,	1	V _{on} =	= 6,	$S_{on}^2 =$	0,67	78		,			
					F	Зариа	нт ()7						
X	1			2		4	,	7		9	-	10	13	
y	23	}	۷	40		62		08		26	1	46	190	
					N_{on} =	= 8,	$S_{on}^2 =$	1,52	21					
						Зариа					ı			
X	2			5		7		8		11		14	20	
У	35	, ,	8	31		95		17		.63	2	205	287	
	$N_{on} = 8$, $S_{on}^2 = 1,436$													
					F	Зариа	нт ()9			ı			
Вариант 09 x 1 3 5 6 7 9 11														
У	y 12 28 44 54 59 75 91													
				N	on =	10, 3	$S_{on}^2 =$	0,03	397					
					I	Вариа	нт 1	10						
X	2		3		4	(5	•	8	10		11	12	
У	20		29		35		1		57	84		90	99	
				Ì	V _{on} =	= 7,	$S_{on}^2 =$	0,11	1					
					F	Зариа	нт 1	11						
X	1	2,		4		5,5	7		8,5		0	11,5	13	
У	14	2	8	38		52		3	75	8	37	95	111	
				Λ	On	11,	011		34					
			L			Вариа			1		ı			
X	2			3,5		5		8		11		2,5	14	
У	21		3	32		46		11		89	1	.06	119	
				Ì		= 7,			97					
	Вариант 13													
X	2			4		6		7		8		10	12	
У	20)	3	38		51		58		70	8	84	104	
					N_{on}	=6,	$S_{on}^2 =$	= 1,0	5					

Вариант 14														
X	3	5	6	7	8		9]	11	13				
у	29	46	54	62	64	ļ.	76	Ç	94	110				
				$S_{on}^2 =$		8		•	1					
			Ba	риант 1	15									
X	4	5	7		8	9		12		14				
У	37	48	50			83		10	2	121				
				6, $S_{on}^2 =$										
		ľ	1	риант 1	-	ı								
X														
У	28	45				105	5	12:	5	153				
				5, $S_{on}^2 =$										
		T		риант 1		Г								
x 1 2 3 4 5 6 7														
y 4 6 6 7 7 8 9														
	$N_{on} = 5$, $S_{on}^2 = 0.028$													
Вариант 18														
X	2	3	4		5	6	_	7		8				
У	4	6	7		8	8,5		10)	10,5				
				$S_{on}^2 = 0$		34 ———								
	4	- I		ариант 1	19 				1.0					
X	4	5	6	6	/	8	9		10	11				
<u> </u>	7	9			1 20/	10	13		12	14				
				$S_{on}^2 =$										
	5		1	ариант 2		0	10		11	12				
X	5	6	-		,5	9	10	-	11	12				
У	7	9		$\frac{0.5}{S^2} = \frac{1}{2}$		11,5	13		14	15,5				
	$N_{on} = 5$, $S_{on}^2 = 4,04964$ Вариант 21													
x														
y	4	6	8]	10	14		13		15				
		1	$N_{on}=6$	$S_{on}^2 = $	0,021	4								

Вариант 22													
X	2	4	6		8		10	12	14				
у	6	7	9	-	11		16	14	15				
			$N_{on}=7$	$S_{on}^{2} =$	0,033	3							
			Ba	риант 2	23								
x	4	6	8	-	10		12	14	16				
У	7	9	11		16		14	15	18				
			$N_{on}=6$,	$S_{on}^2 = 0$),0543	38							
Вариант 24													
x	1	4	7	-	10		13	16					
У	4	7	10		15		15	18					
				$S_{on}^{2} =$		5							
			Ba	риант 2	25								
x 2 5 8 11 14 17 20													
y 6 8 11 13 10 17 20													
			$N_{on}=7$,	$S_{on}^2 = 0$),0345	58							
	_		Ba	риант 2	26								
x	6	9	12		4		17	21					
У	3	6	9		12		15	18					
			$N_{on}=5$,	$S_{on}^2 = 0$),0426	57							
			Ba	риант 2	27								
X	1	2	3		4		5	6	7				
У	6	8	10		11		12	13	14				
			$N_{on} = 6$	$S_{on}^2 =$	0,019)							
			Ba	риант 2	28	Ī							
х	2	3	4		5		6	7	8				
У	9,7	9	10		11		14	15	17				
	$N_{on} = 6$, $S_{on}^2 = 0.05153$												
				риант 2									
x 3 4 5 6 7 8 9 10													
y													
			$N_{on}=6$,	$S_{on}^2 = 0$,00768	87							

Вариант 30													
X	4	5	6	7	8	9	1	0	11	12			
у	10	11	12,8	12,9	16	17	18	3,5	20,5	22			
			N_{on} =	$=6, S_{o}^{2}$	$_{n} = 0.02$	347							
				Вариа	нт 31								
X	1	3		5	7		9	-	11	13			
У	7	10			15		7	4	20	23			
			$N_{_{on}}$	=7, S		289							
Вариант 32 x 2 4 6 8 10 12 14													
x	2	4		6	8				12	14			
У	8	10		14	16		9	4	22	25			
$N_{on} = 6$, $S_{on}^2 = 0225$													
Вариант 33													
x 1 2 3 4 5 6 7 8													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
			N_{on} =		-	668							
				Вариа						Г			
X	1	3	5			9	11		13	15			
У	2	3	4			5	5		5	6			
			N _{on}	$\frac{1}{1}$ = 4, $\frac{1}{2}$		95							
	2			Вариа		10	10		1.4	1.0			
X	2	4	6	8		10	12		14	16			
<u> </u>	3	3	4			6	5		5	6			
			IV _{on}	=6, S		0/9							
Y.	1	2		Вариа 3	4		5		6	7			
$\frac{x}{y}$	10	11		10	12	-	3		6 13	14			
У	10	11					J	-	1.0	14			
$N_{on} = 6, S_{on}^2 = 0.01336$ Вариант 37													
x													
$\frac{x}{y}$	10	11		12	14		3	,	14	15			
	<u> </u>			=7, S									

Вариант 38														
X	3	4	5		6	,	7	8	9	10				
у	11	12	13	3 13	3,6	13	3,2	15	16	16,8				
			$N_{_{on}}$	=6, S	$\frac{1}{2} = 0$,004	161							
		_		Вариа	ант З	39								
X	3	4	5		6	,	7	8	9	10				
У	11	9,5			4		.5	16	17	19				
$N_{on} = 7$, $S_{on}^2 = 0.5735$														
Вариант 40														
X	1		3	5		7		9	11					
<u>y</u>	23	5	52	80	1			36	162					
	$N_{on} = 5, S_{on}^2 = 0.14$													
	-			Вариа	1									
x 2 4 6 7 8 10 12														
<u>y</u>	35	6	52		1			18	146	177				
			N_{or}	$_{i}=9$,			7							
				Вариа	1			<u> </u>						
X	1	2	3	4		5	6	7	8	9				
<u>y</u>	23	35	52	71		0,5	91	95	119,	5 136				
			N_{o}	=8,			95							
	T 4	1 0		Вариа		1				10				
X	1	2 24.5	3		4		5	7	8	10				
<u> </u>	23	24,5			$\frac{52}{\mathbf{G}^2}$		80	108	122	146				
			IV.	=5,			0							
	2	2	1	Вариа	1	1	7	Ω		10				
X	2	3	<u>4</u>	5		<u> </u>	109	8	9	10				
У	35	48	62 N	80 $= 7$,	$\frac{9}{\mathbf{C}^2}$		108	121	133	142				
			1 V				<i></i>							
v	3	4	5	Вариа	1	13 7	8	9	10	11				
$\begin{array}{ c c c c }\hline x \\ \hline y \\ \hline \end{array}$	52	67	78	92	10		138							
<u>y</u>	34	07		$\frac{1}{1} = 6,$				130	, 14/	102				
			1 V 01	$_{n}$ – 0 ,	J_{on} —	0,07	· O							

				Вариа	aht 4	16							
x	1	2		4		7		9	-	10	13		
У	23	40		62	1	08	1	26	1	46	190		
			$N_{\scriptscriptstyle on}$	=8,	$S_{on}^2 =$	1,521							
	_			Вариа	aht 4	17							
X	2	5		7		8		11	-	14	20		
У	35	81			1			.63	2	.05	287		
			N_{on}	= 8,	$S_{on}^2 =$	1,436	5						
	T	ı		Вариа	aht 4	48							
X	1	3		5		6		7		9	11		
У	12	28		44	2			59		75	91		
				=10,			97						
			1	Вариа			T						
x 2 3 4 6 8 10 11 12													
y 20 29 35 51 67 84 90 99 $N_{on} = 7$, $S_{on}^2 = 0,111$													
			$N_{_{on}}$	=7,	$S_{on}^2 =$	0,11	[
				Вариа	ант 5	50				Г			
X	1	2,5	4	5,5	7		8,5			11,5			
У	14	28	38	52	3		75	8	7	95	111		
				=11,			4						
	T			Вариа	1								
X	2	3,5		5		8		11		2,5	14		
У	21	32		46		71		89	1	06	119		
				=7,									
				Вариа				0		10	10		
X	2	4		6		7		8		10	12		
У	20	38		51		58		70		34	104		
				= 6,									
	2	-	1	Вариа		1	ı		<u> </u>	1.1			
X	20 46 54 62 64 76 04 110												
У	29	46	54		52	64		76		94	110		
$N_{on} = 3$, $S_{on}^2 = 0.0578$													

Вариант 54												
X	4	5	7	8	9		12	14				
У	37	48	50	69	83	1	02	121				
			$N_{on}=6$,	$S_{on}^2 = 2,7$	3							
	_		Вариа	ант 55								
X	3	5	7	9	11		13	15				
У	28	45		73	105	5 1	25	153				
$N_{on} = 5$, $S_{on}^2 = 1,62$												
Вариант 56												
x 1 2 3 4 5 6 7												
y 4 6 6 7 7 8 9												
$N_{on} = 5$, $S_{on}^2 = 0.028$												
Вариант 57												
x 2 3 4 5 6 7 8												
y 4 6 7 8 8,5 10 10,5												
$N_{on} = 6, S_{on}^2 = 0.01234$												
				ант 58			Г					
X		5	6 6	7	8	9	10	11				
У	7	9	8 14		10	13	12	14				
			$N_{on}=7$,		34							
 		_		ант 59		1.0	T 44					
X			7 7	7,5	9	10	11	12				
<u> </u>	7	9	$\begin{array}{c c} 19 & 9,5 \\ \hline N & 5 & 6 \\ \end{array}$		11,5	13	14	15,5				
			$N_{on} = 5$, S		704							
	1	2		ант 60	0		1 1	12				
$\frac{x}{y}$	1	3	5	7	9		11	13				
У	4	6	$N_{on} = 6, S$	$\frac{10}{5^2 - 0.02}$	14		13	15				
				$S_{on} = 0.02$	14							
x	2	4	бариз	8	10		12	14				
$\frac{x}{y}$	6	7	9	11	16		14	15				
<u> </u>			$N_{on} = 7$, S				4 1	13				
			i on I, L	on 0,03.								

			В	Вариан	нт 62						
X	4	6		8	10		12	14	16		
у	7	9	1	.1	16		14	15	18		
		•	$N_{on} = 6$	S_{on}	=0.056	438	,				
			В	ариан	нт 63						
X	1	4	,	7	10		13	16			
У	4	7		.0	15		15	18			
			$N_{\scriptscriptstyle on}=$	$4, S_{on}^2$	$_{1} = 0.01$	15					
	T			ариан	нт 64						
X	2	5		8	11		14	17	20		
У	6	8		1	13		10	17	20		
$N_{on} = 7$, $S_{on}^2 = 0.03458$											
Вариант 65											
X	4	6		9	12		17	21			
y 12 3 6 9 15 18											
			$N_{on}=5$	S, S_{on}^2	=0.04	267					
		1		ариан	нт 66	•					
X	1	2		3	4		5	6	7		
У	6	8		.0	11		12	13	14		
			$N_{on} =$	S_o^2	$\frac{1}{2} = 0.0$	19					
			В	вариан	нт 67	1			1		
X	2	3		4	5		6	7	8		
У	9,7	9		.0	11		14	15	17		
			$N_{on} = 6$			153					
			+	вариан	т 68			ı			
X	3					+					
<i>x y</i>	3 11	4 11,2	13,2		3 1		16,2	16,8	17,8		
							16,2	16,8	17,8		
		11,2	$13,2$ $N_{on} = 6$		= 0,007	7687	16,2	16,8	17,8		
	11	11,2	$ \begin{array}{c c} 13,2 \\ N_{on} = 6 \\ \hline 6 \end{array} $	S_{on}^{2} = Вариан	= 0,007 IT 69	9	10) 11	12		
у	11	11,2	$13,2$ $N_{on} = 6$ B	$S_{on}^{2} = 8$	= 0,007 IT 69 8 16	9 17	10) 11	12		

Вариант 70												
X	1	3	5	_		7		9	11		13	
y	7	10	12	2	1	5		17	20		23	
	ı		$N_{on} = 7$, S	$\frac{1^2}{on} = 0$	0,0289)	L				
			Ba	ариа	нт 7	71						
X	2	4	6			8		10	12		14	
у	8	10	14		1			19	22		25	
$N_{on} = 6, S_{on}^2 = 0.225$												
Вариант 72												
X	1	2	3		4	5		6	7		8	
У	2	2	3		3	4		2	4		5	
$N_{on} = 5$, $S_{on}^2 = 0.01668$												
Вариант 73												
x 1 3 5 7 9 11 13 15												
У	2	3		۷		5		5	5		6	
$N_{on} = 4$, $S_{on}^2 = 0.095$												
			Ba	ариа	нт 7	74						
X	5	4	6	8	3	10		12	14		16	
У	3	3	4	۷		6		5	5		6	
			$N_{on}=6$	5, S	$\frac{12}{on} = 0$	0,4679)					
-	T			_	нт 7	75					1	
X	1	2	3		,	4		5	6		7	
У	10	11	10			.2		13	13		14	
			$N_{on}=6$,				6					
		<u> </u>		_	нт 7	76		T		-		
X	2	3	4			5		6	7		8	
У	10	11	12			4		13	14		15	
$N_{on} = 7$, $S_{on}^2 = 0.3214$												
				ариа	нт 7	77						
x	3	4	5		5	7		8	9		10	
У	11	12	13		3,6	13,2		15	16		16,8	
			$N_{on}=6$,	S_{c}^{c}	$\frac{1}{2}$,0046	1					

				Вариа	ант 7	'8					
X	3	4	5		6	7	,	8		9	10
у	11	9,5	13	1	4	15	5	16		17	19
			Non	=7, 5	$S_{on}^2 = 0$),573	5		"		
				Вариа	ант 7	9					
X	1		3	5		7	9)		11	
У	23	5	2	80	10		13	86	1	62	
$N_{on} = 5, S_{on}^2 = 0.14$											
Вариант 80											
x 2 4 6 7 8 10 12											
У	35	6	52	91		17	11	8	1	46	177
$N_{on} = 9, S_{on}^2 = 0,777$											
Вариант 81											
x 1 2 3 4 5 6 7 8 9											
y 23 35 52 71 79,5 91 95 119,5 136											
$N_{on} = 8, S_{on}^2 = 0.895$											
	1			Вариа	ант 8						, ,
X	1	2	3		4	5		7		8	10
У	23	24,5			$\frac{52}{3}$	80		108		122	146
			N _{oi}	=5,)				
			4	Вариа	1						10
X	2	3	4	5	6		7		3	9	10
У	35	48	62	80	$\frac{9}{\mathbf{C}^2}$		108	12	21	133	142
			N_o	=7,	0.1						
	2		T	Вариа	1		0		<u>, </u>	10	11
X	3	4	5	6	7		8	12		10	11
У	52	67	78	92	$\frac{10}{\mathbf{C}^2}$		138	13	00	147	162
			IV on	= 6,			3				
	1		,	Вариа				<u>, l</u>		10	12
<u> </u>	1 22		2	4 62		7	10			10	13
У	23	4	0	62)8 1.521	12	LO	1	46	190
			IV or	=8,	$S_{on} =$	1,321	L				

Вариант 86												
X	2	5	7	,	8	1.	1	1	4	20		
у	35	81	9:	5	117	16	3	20	05	287		
		·	$N_{_{on}} =$	$S_{on}^{2} =$	= 1,436	Ó			·			
			Ba	ариант	87							
X	1	3	5	í	6	7		9	9	11		
У	12	28			54	59	9	7	5	91		
$N_{on} = 10, S_{on}^2 = 0.0397$												
Вариант 88												
X	2	3	4	6	8		10		11	12		
y 20 29 35 51 67 84 90 99 N 7 5 ² 0111												
$N_{on} = 7$, $S_{on}^2 = 0.111$												
Вариант 89												
x 1 2,5 4 5,5 7 8,5 10 11,5 13												
y 14 28 38 52 63 75 87 95 111												
$N_{on} = 11, S_{on}^2 = 0.234$												
				ариант	90							
X	2	3,5			8	1.			2,5	14		
У	21	32			71	89	9	1(06	119		
				$S_{on}^{2} = \frac{1}{2}$		1						
			1	ариант		1 -			<u> </u>			
x	2	4	6		7	8			0	12		
<u>y</u>	20	38	5		68	70)	8	4	104		
				$= 6, S_{on}^2$								
				ариант		1						
X	3	5	6	7	8		9		11	13		
У	29	46	54	62	64		76		94	110		
$N_{on} = 3$, $S_{on}^2 = 0.0578$												
Вариант 93												
x 4 5 7 8 9 12 14												
У	y 37 48 50 69 83 102 121 $N_{on} = 6$, $S_{on}^2 = 2,73$											
			$N_{\scriptscriptstyle on} =$	$6, S_{on}^2$	= 2,73							

	_		Вари	ант 94										
\mathcal{X}	3	5	7	9	11		13	15						
у	28	45	64	73	105	5 1	.25	153						
			$N_{on}=5$,	$S_{on}^2 = 1,6$	2									
Вариант 95														
x 1 2 3 4 5 6 7														
y 4 6 6 7 7 8 9														
$N_{on} = 5$, $S_{on}^2 = 0.028$														
Вариант 96														
X	2	3	4	5	6		7	8						
у	4	6	7	8	8,5	5	10	10,5						
			$N_{on}=6$, S	$G_{on}^2 = 0.012$	234									
			Вари	ант 97										
X	4	5	6 6	7	8	9	10	11						
у	7	9	8 14	11	10	13	12	14						
			$N_{on}=7$,	$S_{\scriptscriptstyle on}^{\scriptscriptstyle 2}=4,28$	84									
			Вари	ант 98										
x	5	6	7 7	7,5	9	10	11	12						
У	7	9 1	9,5	11	11,5	13	14	15,5						
			$N_{on}=5$, S	$\frac{12}{100} = 0.049$	964									
			Вари	ант 99										
X	1	3	5	7	9		11	13						
У														
			$N_{on} = 6$, $S_{on}^2 = 0.0214$											

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 5

Представлена зависимость объёма фильтрата бурового раствора, проходящего через фильтрационную бумагу под действием перепада давлений, от времени процесса. Во время фильтрации наблюдался рост фильтрационной корки. Эксперимент проводился на стандартном фильтр-прессе.

Задание: Необходимо построить эмпирическую модель исходя из теоретического уравнения фильтрации при росте фильтрационной корки. Т.е. использовать уравнение вида $y = b_0 x^{b_0}$ и соответствующую ему линеаризацию (приложение 4, пункт 10).

Дополнительное задание: доказать правильность проведения процедур линеаризации, предложенных в приложении 4.

Вариант 00										
<i>t</i> , мин	1	3	5	7,5	10	20				
Q, мл	8,8	12,6	15	18,4	21,2	29				

Доказать правильность линеаризации № 3, приложение 4.

		вариа	IHT UI	
3	5	7,5	10	20
12,6	15	18,4	21,2	29

t, МИН

Q, мл

Доказать правильность линеаризации № 4, приложение 4.

Вариант 02

			_			
t, мин	3	5	7,5	10	20	25
Q, мл	12,6	15	18,4	21,2	29	32

Доказать правильность линеаризации № 5, приложение 4.

Вариант 03

			_		
t, мин	3	5	20	25	30
Q, мл	12,6	15	29	32	35,8

Доказать правильность линеаризации № 6, приложение 4.

Вариант 04											
<i>t</i> , мин	1	3	5	7,5	-	10	0	20)	30	
Q, мл	8,8	12,6	15	18,4		21		29		35,8	
		правили		· ·			ŕ				4.
<u> </u>				ариант							
<i>t</i> , мин	1	3	5	7,5	,	1	0	20)	30	
Q, мл	7,5	11,6	14,6	17,4	4	20	0	27,	.8	33,8	
Д	оказать	правиль	ность Л	инеари	ізаі	ции .	№ 8,	при	жопі	сение	4.
			В	ариант	г 06	5					
<i>t</i> , мин	1	3	5	10		20)	30			
Q, мл	7,5	11,6	14,6	20		27,	8	33,8	3		
Д	оказать	правиль	ность Л	инеари	тзаі	ции .	<u>№ 9,</u>	при	 ИЛОЖ	кение	4.
Вариант 07											
<i>t</i> , мин	1	3	5	10		20)	30			
Q, мл 7,8 11,9 14,8 20,3 28,1 34,3											
До	казать 1	травилы	ность л	инеари	зац	ии У	№ 10	, пр	илох	кение	4.
			В	ариант	г 08	3					_
<i>t</i> , мин	1	3	5	7,5	-	10	15	5	20	25	
Q, мл	8,3	12,2	15,2	18	2	0,8	25,	,1	28,6	31,6	
До	казать і	правилы	ность л	инеари	зац	ии У	№ 11	, пр	илох	кение	4.
<u> </u>	T			ариант	1		1				_
<i>t</i> , мин	1	3	5	7,5		10	15		20	30	
<i>Q</i> , мл	8,3	12,2	15,2	17,8		0,8	25,		28,1		
До	казать і	травилы					№ 12	, пр	илох	кение	4.
4 35777	1	2		ариант		-	20		\ <u>-</u>	20	
<i>t</i> , мин	1	3	5	10		5	20		25	30	
<i>Q</i> , мл	8,3	12,2	15,2	20,8		5,1	$\frac{28,1}{12}$		1,2	35,1	4
До	казать 1	правилы					Nº 13	, пр	илох	кение	4.
t MIXII	1	2		ариант		1	20)5	20	
<i>t</i> , мин	1	3	5	10		.5	20		25	30	
<i>Q</i> , мл	1,5	2,4	3	4,2		5	5,8		5,4	7,1	
Доказать правильность линеаризации № 14, приложение 4.											

Вариант 12 7,5 3 5 20 25 t, МИН 15 30 2,2 3 5 Q, мл 3,7 5,8 6,4 7,1

Доказать правильность линеаризации № 15, приложение 4.

Вариант 13

<i>t</i> , мин	3	5	7,5	10	15	20	25	30
Q, мл	2,2	2,8	3,3	3,9	4,8	5,6	6,2	6,8

Доказать правильность линеаризации № 16, приложение 4.

Вариант 14

t, МИН	1	3	5	7,5	10	15	20	25	30
Q, мл	1,4	2,3	2,9	3,5	4.1	4,9	5,7	6,3	7

Доказать правильность линеаризации № 3, приложение 4.

Вариант 15

<i>t</i> , мин	1	3	5	7,5	10	15	25	30
Q, мл	1,3	2,3	2,9	3,4	4,0	4,9	6,3	6,9

Доказать правильность линеаризации № 4, приложение 4.

Вариант 16

<i>t</i> , мин	1	3	5	7,5	15	25	30
Q, мл	1,4	2,3	2,9	3,6	4,9	6,3	7

Доказать правильность линеаризации № 5, приложение 4.

Вариант 17

<i>t</i> , мин	1	3	5	7,5	15	25	30
Q, мл	2,6	4	4,8	5,6	6,4	9	9,8

Доказать правильность линеаризации № 6, приложение 4.

Вариант 18

<i>t</i> , мин	1	3	5	7,5	10	15	25	30
Q, мл	2,6	4	4,8	5,6	6,4	8,3	9	9,8

Доказать правильность линеаризации № 7, приложение 4.

				Вари	нант 1	9				
<i>t</i> , мин	1	3	5	7,5	10	15	20	30)	
Q, мл	1,6	2,9	3,8	4,6	5,4	6,8	3 7,9	9,8	8	
Д	оказаті	ь прави	льност	ъ лине	еариза	ции У	№ 8, пј	рилож	кение	4.
				Bapı	ант 2	0				
<i>t</i> , мин	1	3	5	7,5	20	25	30			
$\it Q$, мл	1,6	2,9	3,8	4,6	7,9	8,9	9,8			
Д	оказаті	ь прави	льност	ълине	еариза	ции У	№ 9, п	рилож	кение	4.
				Bapı	іант 2	1	_			
<i>t</i> , мин	1	3	5	7,5	25	30				
Q, мл	1,6	2,9	3,8	4,6	8,9	9,8				
Дс	казать	прави	пьност	ь лине	аризаі	ции М	№ 10, п	рилох	жение	4.
		T	_	Вари	ант 2	2	1		_	
<i>t</i> , мин	1	3	5	7,5	10	20	25	30		
Q, мл	1,2	2,1	3	3,8	4,9	7	8,1	8,9		
Доказать правильность линеаризации № 11, приложение 4.										
				Bapı	иант 2	3				
<i>t</i> , мин	1	5	7,5	10	20	25	30			
Q, мл	1,4	3,4	3,4	5,2	7,5	8,5	9,4			
Дс	казать	прави	пьност	ь лине	аризаі	ции М	№ 12, п	рилох	жение	4.
		Γ	T	Вари	ант 2	4		1	7	
<i>t</i> , мин	1	3	5	7,5	10	20	25	30		
Q, мл	1,4	2,5	3,4	3,4	5,2	7,5	8,5	9,4		
Дс	казать	прави.	пьност	ь лине	аризаг	ции М	№ 13, п	рилох	жение	4.
		I	ı	Bapı	ант 2	5				
<i>t</i> , мин	1	3	5	10	20	30				
Q, мл	1,4	2,5	3,4	5,2	7,5	9,4				
Дс	казать	прави.	пьност	ь лине	аризаі	ции Л	№ 14, п	рилох	жение	4.
				Bapı	ант 2	6				
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30	
Q, мл	1,3	2,3	3,2	4	5	6,2	7,2	8,3	9,1	
Π.						N.C	15	L		1

Доказать правильность линеаризации № 15, приложение 4.

				Bap	иант	27					
<i>t</i> , мин	3	5	7,5	10	15	20	25	30			
Q, мл	2,3	3,2	4	5	6,2	7,2	8,3	9,1			
Дс	казать	прави	льност	ълин	еариз	ации .	№ 16,	прило	жени	e 4.	
				Bap	иант	28					
t, МИН	3	5	7,5	10	20	25	30				
Q, мл	2,3	3,2	4	5	7,2	8,3	9,1				
Д	оказаті	ь прави	ільнос′	гь лин	неариз	вации	№ 3,	прило	жение	4.	
	Вариант 29										
t, мин 1 3 5 7,5 10 15 20 25 30											
Q, мл	1,5	2,6	3,5	4,3	5,2	6,5	7,6	8,6	9,5		
Д	оказать	ь прави	ільнос	гь лин	неариз	вации	№ 4,	прило	жение	4.	
Вариант 30											
<i>t</i> , мин	1	3	5	7,5	20	30					
<i>Q</i> , мл 1,5 2,6 3,5 4,3 7,6 9,5											
Доказать правильность линеаризации № 6, приложение 4.											
				Bap	иант	31		_			
<i>t</i> , мин	1	3	5	7,5	10	20	30				
Q, мл	1,5	2,6	3,5	4,3	5,2	7,6	9,5				
Д	оказать	ь прави	ільнос	гь лин	неариз	вации	№ 7,	прило	жение	4.	
			T	Bap	иант	32	1	T	1		
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30		
Q, мл	1	1,8	2,4	3,2	3,8	4,7	5,5	6,2	6,9		
Д	оказатн	ь прави	ільнос				№ 8,	прило	жение	4.	
			T	_	иант			<u> </u>	٦		
<i>t</i> , мин	1	3	5	7,5	10	15	20	30			
Q, мл	<i>Q</i> , мл 1 1,8 2,4 3,2 3,8 4,7 5,5 6,9										
Доказать правильность линеаризации № 9, приложение 4.											
 		_		_	иант		T _	7			
<i>t</i> , мин	1	3	5	7,5	10	20	30				
Q, мл	1	1,8	2,4	3,2	3,8	5,5	6,9				
Дс	Доказать правильность линеаризации № 10, приложение 4.										

Вариант 35 3 5 20 t, мин 1 7,5 10 15 25 30 Q, мл 0,7 2,2 2,9 3,5 4,5 5,3 1,6 6 6,6

Доказать правильность линеаризации № 11, приложение 4.

Вариант 36

<i>t</i> , мин	1	3	5	10	15	25	30
Q, мл	0,7	1,6	2,2	3,5	4,5	6	6,6

Доказать правильность линеаризации № 12, приложение 4.

Вариант 37

<i>t</i> , мин	1	3	5	7,5	15	20	25	30
Q, мл	0,7	1,6	2,2	2,9	4,5	5,3	6	6,6

Доказать правильность линеаризации № 13, приложение 4.

Вариант 38

<i>t</i> , мин	1	3	5	7,5	15	20	30
Q, мл	1,5	2,6	3,5	4,3	6,5	7,6	9,5

Доказать правильность линеаризации № 5, приложение 4.

Вариант 39

t, мин	1	3	5	7,5	10	15	20	25
Q, мл	0,9	1,7	2,3	3,1	3,7	4,6	5,4	6,1

Доказать правильность линеаризации № 15, приложение 4.

Вариант 40

<i>t</i> , мин	1	3	5	10	15	20	30
$\it Q$, мл	0,9	1,7	2,3	3,7	4,6	5,4	6,8

Доказать правильность линеаризации № 16, приложение 4.

Вариант 41

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	0,9	1,7	2,3	3,1	3,7	4,6	5,4	6,1	6,8

Доказать правильность линеаризации № 3, приложение 4.

Вариант 42 t, мин 3 5 1 25 20 30 10 15 Q, мл 0,9 2,3 5,4 6.1 1.7 3.7 4,6 6.8 Доказать правильность линеаризации № 4, приложение 4.

Вариант 43

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	0,9	1,7	2,3	3,1	3,7	4,6	5,4	6,1	6,8

Доказать правильность линеаризации № 5, приложение 4.

Вариант 44

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	0,8	1,7	2,3	3,1	3,7	4,6	5,4	6,1	6,7

Доказать правильность линеаризации № 6, приложение 4.

Вариант 45

<i>t</i> , мин	1	3	5	7,5	10	15	25	30
Q, мл	0,8	1,7	2,3	3,1	3,7	4,6	6,1	6,7

Доказать правильность линеаризации № 7, приложение 4.

Вариант 46

<i>t</i> , мин	1	3	5	7,5	10	15	30
Q, мл	0,8	1,7	2,3	3,1	3,7	4,6	6,7

Доказать правильность линеаризации № 8, приложение 4.

Вариант 47

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	0,9	1,7	2,3	3,1	3,7	4,6	5,4	6,1	6,8

Доказать правильность линеаризации № 9, приложение 4.

Вариант 48

<i>t</i> , мин	1	3	5	7,5	15	20	25	30
$\it Q$, мл	0,9	1,7	2,3	3,1	4,6	5,4	6,1	6,8

Доказать правильность линеаризации № 10, приложение 4.

Вариант 49 t мин 1 3 5 7.5 20 25

<i>v</i> , 1/11111	1	3			20	
Q, мл	0,9	1,7	2,3	3,1	5,4	6,1

Доказать правильность линеаризации № 11, приложение 4.

Вариант 50

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	3,2	4,6	5,2	6	6,8	8	9	10	10,6

Доказать правильность линеаризации № 12, приложение 4.

Вариант 51

<i>t</i> , мин	1	3	7,5	10	15	20	25	30
Q, мл	3,2	4,6	6	6,8	8	9	10	10,6

Доказать правильность линеаризации № 13, приложение 4.

Вариант 52

<i>t</i> , мин	1	7,5	10	15	20	25	30
Q, мл	3,2	6	6,8	8	9	10	10,6

Доказать правильность линеаризации № 14, приложение 4.

Вариант 53

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	2,9	4,3	4,9	5,8	6,6	7,8	8,6	9,7	10

Доказать правильность линеаризации № 15, приложение 4.

Вариант 54

<i>t</i> , мин	1	3	5	7,5	10	20	30
Q, мл	2,9	4,3	4,9	5,8	6,6	8,6	10

Доказать правильность линеаризации № 3, приложение 4.

Вариант 55

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	3,1	4,5	5,1	5,9	6,7	7,9	8,8	9,9	10,3

Доказать правильность линеаризации № 4, приложение 4.

Вариант 56									
<i>t</i> , мин	1	3	5	7,5	10	15	20	30	
Q, мл	3,1	4,5	5,1	5,9	6,7	7,9	8,8	10,3	

Доказать правильность линеаризации № 5, приложение 4.

Вариант 57

<i>t</i> , мин	1	3	7,5	10	20	25	30
Q, мл	3,1	4,5	5,9	6,7	8,8	9,9	10,3

Доказать правильность линеаризации № 6, приложение 4.

Вариант 58

<i>t</i> , мин	1	3	5	7,5	10	20	25	30
Q, мл	3,1	4,5	5,1	5,9	6,7	8,8	9,9	10,3

Доказать правильность линеаризации № 7, приложение 4.

Вариант 59

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	3	4,4	5	5,9	6,7	7,9	8,7	9,8	10,2

Доказать правильность линеаризации № 8, приложение 4.

Вариант 60

<i>t</i> , мин	1	3	5	7,5	10	15	20	30
Q, мл	3	4,4	5	5,9	6,7	7,9	8,7	10,2

Доказать правильность линеаризации № 9, приложение 4.

Вариант 61

<i>t</i> , мин	1	3	5	7,5	15	25	30
Q, мл	3	4,4	5	5,9	7,9	9,8	10,2

Доказать правильность линеаризации № 10, приложение 4.

Вариант 62

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	3,1	4,5	5,1	5,9	6,7	7,9	8,9	9,9	10,4

Доказать правильность линеаризации № 11, приложение 4.

	Вариант 63								
<i>t</i> , мин	1	3	5	7,5	15	20	25	30	
Q, мл	3,1	4,5	5,1	5,9	7,9	8,9	9,9	10,4	

Доказать правильность линеаризации № 12, приложение 4.

Вариант 64

<i>t</i> , мин	1	3	5	7,5	15	20	30
Q, мл	3,1	4,5	5,1	5,9	7,9	8,9	10,4

Доказать правильность линеаризации № 13, приложение 4.

Вариант 65

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	2,8	3,8	4,4	5	5,8	6,8	7,8	8,4	9

Доказать правильность линеаризации № 14, приложение 4.

Вариант 66

<i>t</i> , мин	1	3	5	7,5	10	20	25	30
Q, мл	2,8	3,8	4,4	5	5,8	7,8	8,4	9

Доказать правильность линеаризации № 15, приложение 4.

Вариант 67

<i>t</i> , мин	1	3	5	7,5	15	20	30
Q, мл	2,8	3,8	4,4	5	6,8	7,8	9

Доказать правильность линеаризации № 16, приложение 4.

Вариант 68

<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	2,6	3,7	4,2	4,7	5,7	6,7	7,7	8,2	8,7

Доказать правильность линеаризации № 3, приложение 4.

Вариант 69

<i>t</i> , мин	1	3	7,5	10	15	20	25	30
Q, мл	2,6	3,7	4,7	5,7	6,7	7,7	8,2	8,7

Доказать правильность линеаризации № 4, приложение 4.

	Вариант 70									
<i>t</i> , мин	1	3	7,5	10	15	20	25			
Q, мл	2,6	3,7	4,7	5,7	6,7	7,7	8,2			
Д	оказаті	•	,	•	•	•		прилог	жение	4.
, ,		1			иант			1		
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30	
Q, мл	2,7	3,8	4,3	4,9	5,8	6,8	7,8	8,3	8,9	
Д	оказать	ь прави	льнос	ть лин	неариз	вации	№ 6, 1	прило	жение	4.
				Bap	иант	72			_	
<i>t</i> , мин	1	3	5	7,5	15	20	25	30		
Q, мл.	2,7	3,8	4,3	4,9	6,8	7,8	8,3	8,9		
Д	оказатн	ь прави	льнос	ть лин	неариз	вации	№ 7, 1	прило	жение	4.
				Bap	иант	73		_		
<i>t</i> , мин	1	3	5	7,5	10	15	30			
Q, мл	2,7	3,8	4,3	4,9	5,8	6,8	8,9			
Д	оказатн	ь прави	льнос	ть лин	неариз	зации	№ 8, 1	прило	жение	4.
				Bap	иант	74				
t, МИН	1	3	5	7,5	10	15	20	25	30	
Q, мл	2,7	3,7	4,3	4,8	5,7	6,7	7,7	8,3	8,8	
Д	оказаті	ь прави	льнос	ть лиі	неариз	вации	№ 9, 1	прило	жение	4.
				Bap	иант	75			-	
t, МИН $ $	1	3	5	7,5	10	15	25	30		
Q, мл	2,7	3,7	4,3	4,8	5,7	6,7	8,3	8,8		
До	казать	прави.	льност	ъ лин	еариз	ации.	№ 10,	прилс	жение	e 4.
			T	Bap	иант	76	T	7		
t, МИН	1	3	5	7,5	10	20	30			
Q, мл	2,7	3,7	4,3	4,8	5,7	7,7	8,8			
Доказать правильность линеаризации № 11, приложение 4.										
				Bap	иант	77	_	_		
t, МИН	1	3	5	7,5	10	15	20	25	30	
Q, мл	3	5	6,8	8,2	9,5	11,4	13,2	14,7	16	
До	Доказать правильность линеаризации № 12, приложение 4.									

			T	Bap	иант '	78	ı	٦		
<i>t</i> , мин	1	3	5	7,5	10	15	20			
Q, мл	3	5	6,8	8,2	9,5	11,4	13,2			
До	казать	прави	льност	гь лин	еариза	ации У	№ 13,	прило	эжение	e 4.
				Bap	иант '	79				
<i>t</i> , мин	1	3	5	7,5	10	20	25	30		
Q, мл	3	5	6,8	8,2	9,5	13,2	14,7	16		
До	казать	прави	льност	гь лин	еариза	ации У	№ 14,	прило	- эжение	e 4.
				Bap	иант	80				
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30	
Q, мл	3,1	5,2	7	8,5	10	11,7	13,5	25	16,4	
До	казать	прави	льност	гь лин	еариза	ации У	№ 15,	прило	жение	e 4.
				Bap	иант (81		_		
<i>t</i> , мин	1	3	5	10	15	20	30			
Q, мл	3,1	5,2	7	10	11,7	13,5	16,4			
До	казать	прави	льност	гь лин	еариза	ации У	№ 16,	прило	эжение	e 4.
				Bap	иант	82				
<i>t</i> , мин	1	3	5	7,5	10	20	25	30		
Q, мл	3,1	5,2	7	8,5	10	13,5	25	16,4		
Д	оказаті	ь прави	ільнос	ть лин	неариз	ации .	№ 3, 1	прило	жение	4.
				Bap	иант	83				
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30	
Q, мл	3,1	5,1	6,9	8,4	9,8	11,6	13,4	14,9	16,2	
Д	оказаті	ь прави	ільнос	ть лин	неариз	ации .	№ 4, 1	прило	жение	4.
	Вариант 84									
t, мин 1 3 7,5 10 15 20 25 30										
Q, мл	<i>Q</i> , мл 3,1 5,1 8,4 9,8 11,6 13,4 14,9 16,2									
Доказать правильность линеаризации № 5, приложение 4.										
	Вариант 85									
<i>t</i> , мин	1	3	5	7,5	10	20	30			
Q, мл	<i>Q</i> , мл 3,1 5,1 6,9 8,4 9,8 13,4 16,2									
Д	Доказать правильность линеаризации № 6, приложение 4.									

Вариант 86									
t, МИН	1	3	5	7,5	10	15	20	25	30
Q, мл	3,1	5,2	7	8,4	9,9	11,6	13,4	14,9	16.3
Д	оказаті	ь прави	льнос	ть лин	еариз	ации	<u>№ 7, г</u>	ірило:	жение 4.
				Bap	иант	87			
<i>t</i> , мин	1	3	5	7,5	10	20	25	30	
Q, мл	3,1	5,2	7	8,4	9,9	13,4	14,9	16.3	
Д	оказаті	ь прави	ильнос	ть лин	еариз	ации	№ 8, 1	ірило:	жение 4.
				Bap	иант	88	1		
t, МИН	1	3	5	7,5	10	30			
Q, мл	3,1	5,2	7	8,4	9,9	16.3			
Д	оказаті	ь прави	ильнос	ть лин	еариз	ации	№ 9, i	прило	жение 4.
					иант		Т	T	
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	3	5,1	6,9	8,3	9,7	11,5	13,3	14,8	16,2
Дс	казать	прави	льност	гь лин	еариза	ации Ј	№ 10,	прилс	жение 4.
				Bap	иант !	90	T	1	1
<i>t</i> , мин	1	3	5	10	15	20	25	30	
Q, мл	3	5,1	6,9	9,7	11,5	13,3	14,8	16,2	
Дс	казать	прави	льност	гь лин	еариза	ации Ј	<u>№ 10,</u>	прилс	жение 4.
				-	иант !				
<i>t</i> , мин	1	3	10	15	20	25	30		
Q, мл	3	5,1	9,7	11,5	13,3	14,8	16,2		
Дс	казать	прави	льност				№ 11,	прилс	жение 4.
			1		иант !			1	
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30
Q, мл	2	2,6	3	3,5	4	5	5,6	6,2	6,8
Доказать правильность линеаризации № 12, приложение 4.									
<u>-</u>			, <u> </u>		иант !				
<i>t</i> , мин	1	7,5	10	15	20	25	30		
Q, мл	2	3,5	4			· 1	5,8		
Доказать правильность линеаризации № 13, приложение 4.									

	Вариант 94									
t, МИН	1	3	5	7,5	10	15	20	25		
Q, мл	2	2,6	3	3,5	4	5	5,6	6,2		
Дс	казать	прави	льност	ь лине	еариза	ции У	<u>©</u> 14, 1	прило	жени	e 4.
				Bapı	иант 9	95				
t, МИН	1	3	5	7,5	10	15	20	30		
Q, мл	2	2,6	3	3,5	4	5	5,6	6,8		
Дс	казать	прави	льност	ь лине	еариза	ции У	№ 15, 1	прило	жени	e 4.
				Bapı	иант 9	96			T	1
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30	
Q, мл	1,6	2,4	3	3,6	4,2	5,2	5,9	6,4	7	
Дс	казать	прави.	пьност	ь лине	еариза	ции У	№ 16, 1	прило	жени	e 4.
		1	ı	Bapı	иант 9	97			1	
<i>t</i> , мин	1	3	5	7,5	15	20	25	30		
Q, мл	1,6	2,4	3	3,6	5,2	5,9	6,4	7		
Д	оказаті	ь прави	льност	ъ лин	еариз	ации .	№ 3, п	рило	жение	÷ 4.
		ı	ı		иант 9	ı			T	1
<i>t</i> , мин	1	3	5	7,5	10	15	20	25	30	
Q, мл	1	2	2,4	3	3,6	4,6	5,4	6	6,5	
Д	Доказать правильность линеаризации № 4, приложение 4.									
		T	Г		иант 9	I			T	1
t, МИН	1	3	5	7,5	10	15	20	25	30	

Q, мл | 1,2 | 2,2 | 2,7 | 3,3 | 3,7 | 5 | 5,6 | 6,4 | 6,8 | Доказать правильность линеаризации № 5, приложение 4.

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ № 6

Представлены таблицы зависимости механической скорости бурения от параметров процесса бурения. Необходимо составить линейную многофакторную модель.

	Вариант 00							
Механическая	Осевая нагрузка, Н	Расход промывочной						
скорость, м/ч		жидкости, л/ч						
3,3	4000	4200						
3,1	5000	3600						
2,4	8000	2400						
2,46	6000	3000						
1,65	7000	3600						
1,35	6000	3600						
	Вариант 01							
Механическая	Осевая нагрузка, Н	Расход промывочной						
скорость, м/ч		жидкости, л/ч						
1,35	6000	3600						
0,78	8000	2400						
0,84	8000	3600						
3,3	6000	5400						
3,1	6000	3600						
	Вариант 03							
Механическая	Осевая нагрузка, Н	Расход промывочной						
скорость, м/ч		жидкости, л/ч						
3,3	4000	4200						
3,1	5000	3600						
2,46	8000	4200						
1,65	9000	4500						
1,35	8000	4500						

Вариант 04							
Механическая	Осевая нагрузка, Н	Расход промывочной					
скорость, м/ч		жидкости, л/ч					
3,3	4000	4200					
2,46	8000	4200					
3,1	5000	3600					
1,65	9000	4500					
1,35	8000	4500					

Вариант 05

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4,1	4200
3,1	3,8	3600
2,4	3,1	2400
2,46	3,2	3000
1,65	2,5	3600
1,35	2,2	3600

Вариант 06

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
1,35	2,2	3600
0,78	1	2400
0,84	0,3	3600
3,3	4,1	5400
3,1	3,8	3600

Вариант 07

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	3,8	4500
2,4	3,4	3600
2,46	3,2	4200
1,65	2,5	4500
1,35	2,2	4500

Вариант 08		
Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	3,8	4500
2,4	3,4	3600
2,46	3,2	4200
1,65	2,5	4500
1,35	2,2	4500
0,78	1	3600
0,84	0,3	4500

Вариант 09

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,3	4000	8,8
3,1	5000	7,1
2,4	8000	3,4
2,46	6000	3,2
1,65	7000	2,5
1,35	6000	2,2

Вариант 10

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
1,35	6000	2,2
0,78	8000	0,8
0,84	8000	0,3
3,3	6000	8,8
3,1	6000	7,1

Вариант 11		
Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,1	6000	7,1
2,4	9000	3,4
2,46	8000	3,2
1,65	9000	2,5
1,35	8000	2,2

Вариант 12

Механическая	Проходка за рейс, м	Проходка
скорость, м/ч		за коронку, м
2,46	3,2	3,2
1,65	2,5	2,5
1,35	2,2	2,2
0,78	1	0,8
0,84	0,3	0,3

Вариант 13

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,4	2400	8000
2,46	3000	6000
1,65	3600	7000
1,35	3600	6000

Вариант 14

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
1,35	3600	6000
0,78	2400	8000
0,84	3600	8000
3,3	5400	6000
3,1	3600	6000

Вариант 15		
Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,1	4500	6000
2,4	3600	9000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Вариант 17

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
2,46	4200	8000
3,1	3600	5000
1,65	4500	9000
1,35	4500	8000

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,3	4200	4,1
3,1	3600	3,8
2,4	2400	3,1
2,46	3000	3,2
1,65	3600	2,5
1,35	3600	2,2

Вариант 19		
Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
1,35	3600	2,2
0,78	2400	1
0,84	3600	0,3
3,3	5400	4,1
3,1	3600	3,8

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,1	4500	3,8
2,4	3600	3,4
2,46	4200	3,2
1,65	4500	2,5
1,35	4500	2,2

Вариант 21

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,1	4500	3,8
2,4	3600	3,4
2,46	4200	3,2
1,65	4500	2,5
1,35	4500	2,2
0,78	3600	1
0,84	4500	0,3

Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
3,3	8,8	4000
3,1	7,1	5000
2,4	3,4	8000
2,46	3,2	6000
1,65	2,5	7000
1,35	2,2	6000

Вариант 23		
Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
1,35	2,2	6000
0,78	0,8	8000
0,84	0,3	8000
3,3	8,8	6000
3,1	7,1	6000

Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
3,1	7,1	6000
2,4	3,4	9000
2,46	3,2	8000
1,65	2,5	9000
1,35	2,2	8000

Вариант 25

Механическая	Проходка за рейс, м	Проходка
скорость, м/ч		за коронку, м
2,46	3,2	3,2
1,65	2,5	2,5
1,35	2,2	2,2
0,78	1	0,8
0,84	0,3	0,3

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,6	4050	4200
3,8	5100	3600
3	8300	2400
3,07	6100	3000
2,06	7400	3600
1,68	6200	3600

Вариант 27		
Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
1,35	6000	3600
0,78	8000	2400
0,84	8000	3600
3,3	6000	5400
3,1	6000	3600

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	6000	4500
2,4	9000	3600
2,46	8000	4200
1,65	9000	4500
1,35	8000	4500

Вариант 29

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
3,1	5000	3600
2,46	8000	4200
1,65	9000	4500
1,35	8000	4500

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
2,46	8000	4200
3,1	5000	3600
1,65	9000	4500
1,35	8000	4500

Вариант 31		
Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4,1	4200
3,1	3,8	3600
2,4	3,1	2400
2,46	3,2	3000
1,65	2,5	3600
1,35	2,2	3600

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
0,78	1	2400
0,84	0,3	3600
3,3	4,1	5400
3,1	3,8	3600
1,35	2,2	3600

Вариант 33

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
2,46	3,2	4200
3,1	3,8	4500
2,4	3,4	3600
1,65	2,5	4500
1,35	2,2	4500

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	3,8	4500
2,46	3,2	4200
1,65	2,5	4500
1,35	2,2	4500
0,84	0,3	4500

Вариант 35		
Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,1	5000	7,1
2,4	8000	3,4
3,3	4000	8,8
2,46	6000	3,2
1,65	7000	2,5
1,35	6000	2,2

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
1,35	6000	2,2
0,78	8000	0,8
0,84	8000	0,3
3,3	6000	8,8
3,1	6000	7,1

Вариант 37

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,1	6000	7,1
2,4	9000	3,4
1,65	9000	2,5
1,35	8000	2,2

Механическая	Проходка за рейс, м	Проходка
скорость, м/ч		за коронку, м
2,46	3,2	3,2
1,65	2,5	2,5
1,35	2,2	2,2
0,78	1	0,8
0,84	0,3	0,3

Вариант 39		
Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,4	2400	8000
2,46	3000	6000
1,65	3600	7000
1,35	3600	6000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
1,35	3600	6000
0,78	2400	8000
0,84	3600	8000
3,3	5400	6000
3,1	3600	6000

Вариант 41

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
2,46	4200	8000
1,65	4500	9000
3,1	4500	6000
2,4	3600	9000
1,35	4500	8000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Вариант 43		
Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
2,46	4200	8000
3,1	3600	5000
1,65	4500	9000
1,35	4500	8000

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,3	4200	4,1
3,1	3600	3,8
2,4	2400	3,1
2,46	3000	3,2
1,65	3600	2,5
1,35	3600	2,2

Вариант 45

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
1,35	3600	2,2
3,3	5400	4,1
3,1	3600	3,8
0,78	2400	1
0,84	3600	0,3

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
2,46	4200	3,2
1,65	4500	2,5
1,35	4500	2,2
3,1	4500	3,8
2,4	3600	3,4

Вариант 47		
Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
1,65	4500	2,5
1,35	4500	2,2
0,78	3600	1
0,84	4500	0,3
3,1	4500	3,8
2,4	3600	3,4
2,46	4200	3,2

Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
3,3	8,8	4000
2,4	3,4	8000
2,46	3,2	6000
1,65	2,5	7000
3,1	7,1	5000
1,35	2,2	6000

Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
1,35	2,2	6000
3,3	8,8	6000
3,1	7,1	6000
0,78	0,8	8000
0,84	0,3	8000

Вариант 50		
Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
1,65	3600	7000
1,35	3600	6000
2,4	2400	8000
2,46	3000	6000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
0,84	3600	8000
1,35	3600	6000
0,78	2400	8000
3,3	5400	6000
3,1	3600	6000

Вариант 52

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,1	4500	6000
2,4	3600	9000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
3,1	5000	3600
2,46	8000	4200
1,65	9000	4500
1,35	8000	4500

Вариант 54		
Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
2,46	8000	4200
3,1	5000	3600
1,65	9000	4500
1,35	8000	4500

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4,1	4200
3,1	3,8	3600
2,4	3,1	2400
2,46	3,2	3000
1,65	2,5	3600
1,35	2,2	3600

Вариант 56

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
1,35	2,2	3600
0,78	1	2400
0,84	0,3	3600
3,3	4,1	5400
3,1	3,8	3600

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	3,8	4500
2,4	3,4	3600
2,46	3,2	4200
1,65	2,5	4500
1,35	2,2	4500

	Вариант 58	
Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	3,8	4500
2,4	3,4	3600
2,46	3,2	4200
1,65	2,5	4500
1,35	2,2	4500
0,78	1	3600
0,84	0,3	4500
	Вариант 59	
Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,3	4000	8,8
3,1	5000	7,1
2,4	8000	3,4
2,46	6000	3,2
1,65	7000	2,5
1,35	6000	2,2

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
1,35	6000	2,2
0,78	8000	0,8
0,84	8000	0,3
3,3	6000	8,8
3,1	6000	7,1

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,1	6000	7,1
2,4	9000	3,4
2,46	8000	3,2
1,65	9000	2,5
1,35	8000	2,2

Вариант 62		
Механическая	Проходка за рейс, м	Проходка
скорость, м/ч		за коронку, м
2,46	3,2	3,2
1,65	2,5	2,5
1,35	2,2	2,2
0,78	1	0,8
0,84	0,3	0,3

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
3,1	5000	3600
2,4	8000	2400
2,46	6000	3000
1,65	7000	3600
1,35	6000	3600

Вариант 64

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
1,35	3600	6000
0,78	2400	8000
0,84	3600	8000
3,3	5400	6000
3,1	3600	6000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,1	4500	6000
2,4	3600	9000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Вариант 66		
Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
2,46	4200	8000
3,1	3600	5000
1,65	4500	9000
1,35	4500	8000

Вариант 68

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,3	4200	4,1
3,1	3600	3,8
2,4	2400	3,1
2,46	3000	3,2
1,65	3600	2,5
1,35	3600	2,2

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
1,35	3600	2,2
0,78	2400	1
0,84	3600	0,3
3,3	5400	4,1
3,1	3600	3,8

Вариант 70		
Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,1	4500	3,8
2,4	3600	3,4
2,46	4200	3,2
1,65	4500	2,5
1,35	4500	2,2

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,1	4500	3,8
2,4	3600	3,4
2,46	4200	3,2
1,65	4500	2,5
1,35	4500	2,2
0,78	3600	1
0,84	4500	0,3

Вариант 72

	<u> </u>	
Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,3	4000	8,8
3,1	5000	7,1
2,4	8000	3,4
2,46	6000	3,2
1,65	7000	2,5
1,35	6000	2,2

Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
1,35	2,2	6000
0,78	0,8	8000
0,84	0,3	8000
3,3	8,8	6000
3,1	7,1	6000

Вариант 74		
Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
3,1	7,1	6000
2,4	3,4	9000
2,46	3,2	8000
1,65	2,5	9000
1,35	2,2	8000

Механическая	Проходка за рейс, м	Проходка
скорость, м/ч		за коронку, м
2,46	3,2	3,2
1,65	2,5	2,5
1,35	2,2	2,2
0,78	1	0,8
0,84	0,3	0,3

Вариант 76

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,6	4050	4200
3,8	5100	3600
3	8300	2400
3,07	6100	3000
2,06	7400	3600
1,68	6200	3600

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
1,35	6000	3600
0,78	8000	2400
0,84	8000	3600
3,3	6000	5400
3,1	6000	3600

Вариант 78		
Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	6000	4500
2,4	9000	3600
2,46	8000	4200
1,65	9000	4500
1,35	8000	4500

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
3,1	5000	3600
2,46	8000	4200
1,65	9000	4500
1,35	8000	4500

Вариант 80

Механическая	Осевая нагрузка, Н	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4000	4200
2,46	8000	4200
3,1	5000	3600
1,65	9000	4500
1,35	8000	4500

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,3	4,1	4200
3,1	3,8	3600
2,4	3,1	2400
2,46	3,2	3000
1,65	2,5	3600
1,35	2,2	3600

Вариант 82		
Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
0,78	1	2400
0,84	0,3	3600
3,3	4,1	5400
3,1	3,8	3600
1,35	2,2	3600

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
2,46	3,2	4200
3,1	3,8	4500
2,4	3,4	3600
1,65	2,5	4500
1,35	2,2	4500

Вариант 84

Механическая	Проходка за рейс, м	Расход промывочной
скорость, м/ч		жидкости, л/ч
3,1	3,8	4500
2,46	3,2	4200
1,65	2,5	4500
1,35	2,2	4500
0,84	0,3	4500

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,1	5000	7,1
2,4	8000	3,4
3,3	4000	8,8
2,46	6000	3,2
1,65	7000	2,5
1,35	6000	2,2

Вариант 86		
Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
1,35	6000	2,2
0,78	8000	0,8
0,84	8000	0,3
3,3	6000	8,8
3,1	6000	7,1

Механическая	Осевая нагрузка, Н	Проходка
скорость, м/ч		за коронку, м
3,1	6000	7,1
2,4	9000	3,4
1,65	9000	2,5
1,35	8000	2,2

Вариант 88

Механическая	Проходка за рейс, м	Проходка
скорость, м/ч		за коронку, м
2,46	3,2	3,2
1,65	2,5	2,5
1,35	2,2	2,2
0,78	1	0,8
0,84	0,3	0,3

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,4	2400	8000
2,46	3000	6000
1,65	3600	7000
1,35	3600	6000

Вариант 90		
Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
1,35	3600	6000
0,78	2400	8000
0,84	3600	8000
3,3	5400	6000
3,1	3600	6000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
2,46	4200	8000
1,65	4500	9000
3,1	4500	6000
2,4	3600	9000
1,35	4500	8000

Вариант 92

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
3,1	3600	5000
2,46	4200	8000
1,65	4500	9000
1,35	4500	8000

Механическая	Расход промывочной	Осевая нагрузка, Н
скорость, м/ч	жидкости, л/ч	
3,3	4200	4000
2,46	4200	8000
3,1	3600	5000
1,65	4500	9000
1,35	4500	8000

Вариант 94		
Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
3,3	4200	4,1
3,1	3600	3,8
2,4	2400	3,1
2,46	3000	3,2
1,65	3600	2,5
1,35	3600	2,2

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
1,35	3600	2,2
3,3	5400	4,1
3,1	3600	3,8
0,78	2400	1
0,84	3600	0,3

Вариант 96

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
2,46	4200	3,2
1,65	4500	2,5
1,35	4500	2,2
3,1	4500	3,8
2,4	3600	3,4

Механическая	Расход промывочной	Проходка за рейс, м
скорость, м/ч	жидкости, л/ч	
1,65	4500	2,5
1,35	4500	2,2
0,78	3600	1
0,84	4500	0,3
3,1	4500	3,8
2,4	3600	3,4
2,46	4200	3,2

Вариант 98		
Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
3,3	8,8	4000
2,4	3,4	8000
2,46	3,2	6000
1,65	2,5	7000
3,1	7,1	5000
1,35	2,2	6000

Механическая	Проходка	Осевая нагрузка, Н
скорость, м/ч	за коронку, м	
1,35	2,2	6000
3,3	8,8	6000
3,1	7,1	6000
0,78	0,8	8000
0,84	0,3	8000

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
ВВЕДЕНИЕ	4
МЕТОДЫ ТОЧНОЙ ИНТЕРПОЛЯЦИИ	6
Лабораторная работа № 1. Кусочно-линейная интерполяция	
Лабораторная работа № 2. Канонический полином	13
РЕГРЕССИОННЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ	19
Лабораторная работа № 3. Линейная однопараметрическая регрессия	21
Лабораторная работа № 4. Линейная двухпараметрическая регрессия	30
Лабораторная работа № 5. Нелинейная двухпараметрическая регрессия.	
Линеаризация	35
Лабораторная работа № 6. Линейная многофакторная регрессия	38
ЗАКЛЮЧЕНИЕ	43
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	44
ПРИЛОЖЕНИЯ	45
Приложение 1. Таблица для определения тесноты линейной связи	
по коэффициенту корреляции	45
Приложение 2. Критерий Стьюдента	46
Приложение 3. Критерий Фишера для уровня значимости $\alpha = 0.05$	48
Приложение 4. Формы уравнений парной регрессии	49
Приложение 5. Варианты заданий к лабораторным работам № 1 и 2	50
Приложение 6. Варианты заданий к лабораторной работе № 3	67
Приложение 7. Варианты заданий к лабораторной работе № 4	77
Приложение 8. Варианты заданий к лабораторной работе № 5	90
Приложение 9. Варианты заданий к лабораторной работе № 6	104

Учебное издание

НИКИТИН Василий Игоревич

Моделирование физических процессов на основании экспериментальных данных

Редактор В.В. Прокопова Компьютерная верстка И.О. Миняева Выпускающий редактор Н.В. Беганова

Подписано в печать 31.07.17. Формат 60×84 1/16. Бумага офсетная Усл. п. л. 7,67. Уч.-изд. л. 7,64. Тираж 75 экз. Рег. № 118/17

Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет» 443100, г. Самара, ул. Молодогвардейская, 244. Главный корпус

Отпечатано в типографии Самарского государственного технического университета 443100, г. Самара, ул. Молодогвардейская, 244. Корпус № 8